A335290 Primitive pseudoperfect numbers (A006036) that are not primitive abundant (A071395).
6, 28, 350, 490, 496, 770, 910, 1190, 1330, 1610, 2030, 2170, 2590, 2870, 3010, 3290, 3710, 4130, 4270, 4690, 4970, 5110, 5530, 5810, 6230, 6790, 7070, 7210, 7490, 7630, 7910, 8128, 8890, 9170, 9196, 9590, 9730, 15884, 19228, 24244, 25916, 30932, 34276, 35948
Offset: 1
Keywords
Examples
350 is a term since it is pseudoperfect: 1 + 5 + 14 + 35 + 50 + 70 + 175 = 350. All of its proper divisors, {1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175} are not pseudoperfect, and it is not primitive abundant, since its divisor 70 is abundant.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
pspQ[n_] := Module[{d = Most @ Divisors[n], x}, Plus @@d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0]; primPspQ[n_] := pspQ[n] && AllTrue[Most @ Divisors[n], !pspQ[#] &]; primAbQ[n_] := DivisorSigma[1, n] > 2*n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2*# &]; Select[Range[1000], primPspQ[#] && !primAbQ[#] &]
Comments