cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306994 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms is digitally balanced.

This page as a plain text file.
%I A306994 #10 Mar 21 2019 13:31:39
%S A306994 1,8,2,7,3,6,4,5,30,11,24,13,22,15,20,17,18,19,16,21,14,23,12,25,10,
%T A306994 27,29,9,26,109,32,103,36,99,40,95,44,91,48,87,52,83,56,79,60,75,64,
%U A306994 71,68,67,72,63,76,59,80,55,84,51,88,47,92,43,96,39,100,35
%N A306994 Lexicographically earliest sequence of distinct positive terms such that the sum of two consecutive terms is digitally balanced.
%C A306994 Digitally balanced numbers correspond to A031443.
%H A306994 Rémy Sigrist, <a href="/A306994/b306994.txt">Table of n, a(n) for n = 1..10000</a>
%H A306994 Rémy Sigrist, <a href="/A306994/a306994.gp.txt">PARI program for A306994</a>
%e A306994 The first terms, alongside the binary representation of a(n) + a(n+1), are:
%e A306994   n   a(n)  bin(a(n)+a(n+1))
%e A306994   --  ----  ----------------
%e A306994    1     1              1001
%e A306994    2     8              1010
%e A306994    3     2              1001
%e A306994    4     7              1010
%e A306994    5     3              1001
%e A306994    6     6              1010
%e A306994    7     4              1001
%e A306994    8     5            100011
%e A306994    9    30            101001
%e A306994   10    11            100011
%e A306994   11    24            100101
%e A306994   12    13            100011
%e A306994   13    22            100101
%e A306994   14    15            100011
%e A306994   15    20            100101
%e A306994   16    17            100011
%o A306994 (PARI) See Links section.
%Y A306994 See A306992 for the multiplicative variant.
%Y A306994 Cf. A031443.
%K A306994 nonn,look,base
%O A306994 1,2
%A A306994 _Rémy Sigrist_, Mar 18 2019