A307000 Number of unitary rings with additive group (Z/nZ)^2. Equivalently, number of unitary commutative rings with additive group (Z/nZ)^2.
1, 3, 3, 6, 3, 9, 3, 10, 5, 9, 3, 18, 3, 9, 9, 14, 3, 15, 3, 18, 9, 9, 3, 30, 5, 9, 7, 18, 3, 27, 3, 18, 9, 9, 9, 30, 3, 9, 9, 30, 3, 27, 3, 18, 15, 9, 3, 42, 5, 15, 9, 18, 3, 21, 9, 30, 9, 9, 3, 54, 3, 9, 15, 22, 9, 27, 3, 18, 9, 27, 3, 50, 3, 9, 15, 18, 9, 27
Offset: 1
Examples
The nonisomorphic unitary rings with additive group (Z/nZ)^2 (rings of the form Z_n[x]/(x^2 + b*x + c)) are given by Z_n[x]/(f(x)), where f(x) = n = 1: x^2 (total number = 1); n = 2: x^2, x^2 - x, x^2 - x - 1 (total number = 3); n = 3: x^2, x^2 - 1, x^2 - 2 (total number = 3); n = 4: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - x, x^2 - x - 1 (total number = 6); n = 5: x^2, x^2 - 1, x^2 - 2 (total number = 3); n = 6: x^2, x^2 - 1, x^2 - 2, x^2 - x, x^2 - x - 1, x^2 - x - 2, x^2 - x - 3, x^2 - x - 4, x^2 - x - 5 (total number = 9); n = 7: x^2, x^2 - 1, x^2 - 3 (total number = 3); n = 8: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - 4, x^2 - 5, x^2 - 6, x^2 - 7, x^2 - x, x^2 - x - 1 (total number = 10); n = 9: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - 6 (total number = 5); n = 10: x^2, x^2 - 1, x^2 - 2, x^2 - x, x^2 - x - 1, x^2 - x - 3, x^2 - x - 4, x^2 - x - 5, x^2 - x - 6 (total number = 9). See the link for rings of the form Z_n[x]/(x^2 + b*x + c) for n <= 100.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Christof Nöbauer, Numbers of rings on groups of prime power order.
- Jianing Song, List of rings of the form Z_n[x]/(x^2 + b*x + c) for n <= 100.
- Jianing Song, Note on A307000.
Crossrefs
Programs
-
Mathematica
f[2, e_] := If[e == 1, 3, 4*e - 2]; f[p_, e_] := 2*e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p>=3, r*=(2*e+1)); if(p==2&&e==1, r*=3); if(p==2&&e>=2, r*=4*e-2); ); return(r); }
Formula
Multiplicative with a(p^e) = 2*e + 1, a(2) = 3 and a(2^e) = 4*e - 2 for e >= 2.
Dirichlet g.f.: zeta(s)^3/zeta(2s)*(1/(1+2^(-s))).
Sum_{k=1..n} a(k) ~ (2*n/Pi^2) * (log(n)^2 + c_1 * log(n) + c_2), where c_1 = 6 * gamma - 2 + 2*log(2)/3 - 4*zeta'(2)/zeta(2) = 4.2052360821..., gamma is Euler's constant (A001620), c_2 = 2 - 6*gamma + 6*gamma^2 - 2*log(2)/3 + 2*gamma*log(2) - log(2)^2/9 - 6*gamma_1 + 4*(1 - 3*gamma - log(2)/3)*zeta'(2)/zeta(2) + 8*(zeta'(2)/zeta(2))^2 - 4*zeta''(2)/zeta(2) = 1.2136692558..., and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Dec 22 2023
Extensions
New name from Jianing Song, Feb 15 2021
New name from Jianing Song, Apr 23 2021
Comments