A307004 Numbers k such that phi^e(k) > phi^e(m) for all m < k, where phi^e(k) = A072911(k) is the number of divisors d of k such that d and k are exponentially coprime.
1, 8, 32, 128, 864, 2048, 3456, 7776, 31104, 279936, 497664, 1990656, 4478976, 17915904, 62208000, 97200000, 362797056, 559872000, 874800000, 1555200000, 6220800000, 13996800000, 55987200000, 349920000000, 895795200000, 1133740800000, 1399680000000, 4534963200000
Offset: 1
Keywords
References
- József Sándor, On an exponential totient function, Studia Univ. Babees-Bolyai, Math., Vol. 41 (1996), pp. 91-94.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..57
- Amiram Eldar, Table of n, a(n), A072911(a(n)) for n = 1..57
- László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2004), pp. 285-294.
Programs
-
Mathematica
f[n_] := Times@@EulerPhi[FactorInteger[n][[All,2]]]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, AppendTo[s,n]; fm=f1], {n,1,10^6}]; s
Comments