This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307015 #19 Mar 25 2019 08:15:12 %S A307015 1,2,6,12,36,60,180,360,840,2520,7560,15120,45360,55440,166320,498960, %T A307015 720720,2162160,6486480,10810800,32432400,61261200,183783600, %U A307015 551350800,1102701600,2327925600,6983776800,20951330400,48886437600,146659312800,374796021600,1124388064800 %N A307015 Smallest number with same number of divisors as 3*a(n-1). %C A307015 Question: is the intersection of this sequence and A019505 infinite? %e A307015 36*3=108 has 12 divisors; smallest number with 12 divisors is 60. %t A307015 With[{s = DivisorSigma[0, Range[10^7]]}, Nest[Append[#, First@ FirstPosition[s, DivisorSigma[0, 3 Last@ #]]] &, {1}, 18]] (* _Michael De Vlieger_, Mar 21 2019 *) %o A307015 (PARI) least(x) = {my(k=1, nd = numdiv(x)); while (numdiv(k) != nd, k++); k;} %o A307015 lista(nn) = {my(a = 1); print1(a, ", "); for (n=2, nn, a = least(3*a); print1(a, ", "););} \\ _Michel Marcus_, Mar 20 2019 %Y A307015 Cf. A019505. %K A307015 nonn %O A307015 1,2 %A A307015 _J. Lowell_, Mar 19 2019 %E A307015 a(17)-a(21) from _Michel Marcus_, Mar 20 2019 %E A307015 a(22)-a(32) from _Giovanni Resta_, Mar 22 2019