This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307026 #25 Feb 16 2025 08:33:55 %S A307026 0,1,30,3,235,5148,6,1448,96956,6014812,10,7909,1622015,329967798, %T A307026 57533191444,15,40674,25281625,16997993692,9454839968415, %U A307026 4956907379126694,21,202719,375341540,834776217484,1482823362091281,2480146959625512771,3954100866385811897908 %N A307026 Number of (undirected) paths in the m X n king graph (triangle read by rows with m = 1..n and n = 1..). %C A307026 Paths of length zero are not counted here. - _Seiichi Manyama_, Dec 15 2020 %H A307026 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %H A307026 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %F A307026 T(1, n) = binomial(n, 2). %F A307026 T(n, n) = A288033(n). %e A307026 0; %e A307026 1, 30; %e A307026 3, 235, 5148; %e A307026 6, 1448, 96956, 6014812; %e A307026 10, 7909, 1622015, 329967798, 57533191444; %e A307026 15, 40674, 25281625, 16997993692, ...; %o A307026 (Python) %o A307026 # Using graphillion %o A307026 from graphillion import GraphSet %o A307026 def make_nXk_king_graph(n, k): %o A307026 grids = [] %o A307026 for i in range(1, k + 1): %o A307026 for j in range(1, n): %o A307026 grids.append((i + (j - 1) * k, i + j * k)) %o A307026 if i < k: %o A307026 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A307026 if i > 1: %o A307026 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A307026 for i in range(1, k * n, k): %o A307026 for j in range(1, k): %o A307026 grids.append((i + j - 1, i + j)) %o A307026 return grids %o A307026 def A(start, goal, n, k): %o A307026 universe = make_nXk_king_graph(n, k) %o A307026 GraphSet.set_universe(universe) %o A307026 paths = GraphSet.paths(start, goal) %o A307026 return paths.len() %o A307026 def A307026(n, k): %o A307026 m = k * n %o A307026 s = 0 %o A307026 for i in range(1, m): %o A307026 for j in range(i + 1, m + 1): %o A307026 s += A(i, j, n, k) %o A307026 return s %o A307026 print([A307026(n, k) for n in range(1, 8) for k in range(1, n + 1)]) # _Seiichi Manyama_, Dec 15 2020 %Y A307026 Row n=2..5 give: A339750, A339751, A358626, A358920. %Y A307026 Cf. A288033 (n X n king graph), A288518. %K A307026 nonn,tabl %O A307026 1,3 %A A307026 _Eric W. Weisstein_, Mar 20 2019 %E A307026 a(20)-a(28) from _Seiichi Manyama_, Dec 15 2020