This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307027 #8 Feb 16 2025 08:33:55 %S A307027 1,3,12,6,33,135,10,72,438,2224,15,135,1140,8850,55725,21,228,2511, %T A307027 27480,265665,2006316,28,357,4893,70462,962010,11158203,98309827,36, %U A307027 528,8700,156768,2818740,46176816,624859788,6291829440,45,747,14418,313434,7054875,152212365,2909139912 %N A307027 Number of (undirected) paths in the complete bipartite graph K_{m,n} (triangle read by rows with m = 1..n and n = 1..). %H A307027 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a> %H A307027 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphPath.html">Graph Path</a> %F A307027 a(1, n) = binomial(n + 1, 2). %F A307027 a(2, n) = n*(n^2 + 2). %F A307027 a(3, n) = 3/2*n*(-3 + 11*n - 6*n^2 + 2*n^3). %F A307027 a(4, n) = 2*n*(70 - 152*n + 123*n^2 - 42*n^3 + 6*n^4). %F A307027 a(n, n) = A288035(n). %e A307027 1; %e A307027 3,12; %e A307027 6,33,135; %e A307027 10,72,438,2224; %e A307027 15,135,1140,8850,55725; %e A307027 21,228,2511,27480,265665,2006316; %e A307027 28,357,4893,70462,962010,11158203,98309827; %e A307027 36,528,8700,156768,2818740,46176816,624859788,6291829440; %e A307027 45,747,14418,313434,7054875,152212365,2909139912,...; %Y A307027 Cf. A288035 (K_{n,n} path count). %K A307027 nonn,tabl,more %O A307027 1,2 %A A307027 _Eric W. Weisstein_, Mar 20 2019