cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359060 Decimal expansion of Sum_{n >= 1} sigma_4(n)/n!.

Original entry on oeis.org

4, 2, 3, 0, 1, 0, 4, 7, 5, 0, 3, 7, 3, 3, 5, 0, 8, 0, 6, 6, 8, 6, 4, 2, 8, 4, 0, 6, 2, 5, 3, 0, 7, 6, 4, 5, 3, 0, 5, 9, 5, 6, 7, 0, 6, 2, 2, 4, 9, 3, 3, 2, 3, 1, 5, 5, 1, 1, 8, 8, 7, 6, 9, 4, 9, 4, 2, 6, 8, 9, 9, 1, 3, 1, 9, 7, 6, 5, 8, 1, 2
Offset: 2

Views

Author

Keywords

Comments

This constant's irrationality was conjectured by Erdős and Kac in 1953 and proved by Pratt in 2022.

Examples

			42.301047503733508066864284062530764530595670622493323155118876949426899131....
		

Crossrefs

Sum_{n >= 1} sigma_k(n)/n!: A227988 (k=1), A227989 (k=2), A307036 (k=3), this sequence (k=4).

Programs

  • Mathematica
    RealDigits[N[Sum[DivisorSigma[4, n]/n!, {n, 1, 500}], 120]][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    suminf(n=1,sigma(n,4)/n!)

A371133 Decimal expansion of Sum_{n>=1} d(n)/n!, where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 4, 8, 1, 0, 6, 1, 0, 1, 9, 7, 9, 0, 7, 6, 2, 6, 9, 7, 9, 3, 7, 4, 4, 7, 6, 9, 6, 3, 9, 8, 6, 5, 7, 3, 9, 5, 6, 8, 6, 8, 9, 7, 7, 6, 1, 2, 1, 7, 1, 3, 1, 6, 2, 0, 7, 2, 3, 6, 9, 3, 3, 7, 1, 7, 5, 5, 2, 0, 4, 4, 1, 0, 9, 0, 9, 3, 0, 3, 3, 3, 6, 9, 2, 6, 7, 2, 0, 2, 4, 8, 3, 2, 4, 7, 1, 2, 9, 3, 8, 4, 8, 6, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2024

Keywords

Comments

This constant is irrational (Erdős and Straus, 1971).

Examples

			2.48106101979076269793744769639865739568689776121713...
		

Crossrefs

Sum_{n>=1} sigma_k(n)/n!: this sequence (k=0), A227988 (k=1), A227989 (k=2), A307036 (k=3), A359060 (k=4).

Programs

  • Maple
    with(numtheory); evalf(Sum(tau(n)/factorial(n), n = 1 .. infinity), 120)
  • Mathematica
    RealDigits[N[Sum[DivisorSigma[0, n]/n!, {n, 1, 500}], 120]][[1]]
  • PARI
    suminf(k=1,numdiv(k)/k!)

Formula

Equals Sum_{j,k>=1} 1/(j*k)! (Shamos, 2011, p. 4).
Showing 1-2 of 2 results.