cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307048 Permutation of the positive integers derived from the terms of A322469 having the form 6*k - 2.

This page as a plain text file.
%I A307048 #12 Nov 13 2024 19:05:38
%S A307048 2,1,6,5,10,4,14,7,18,13,22,8,26,3,30,21,34,12,38,9,42,29,46,16,50,23,
%T A307048 54,37,58,20,62,19,66,45,70,24,74,17,78,53,82,28,86,39,90,61,94,32,98,
%U A307048 15,102,69,106,36,110,25,114,77,118,40,122,55
%N A307048 Permutation of the positive integers derived from the terms of A322469 having the form 6*k - 2.
%C A307048 The sequence is the flattened form of an irregular table U(i, j) similar to table T(i, j) in A322469. U(i, j) = k is defined only for the elements T(i, j) which have the form 6*k - 2, so the table is sparsely filled.
%C A307048 Like in A322469, the columns in table U contain arithmetic progressions.
%C A307048 a(n) is a permutation of the positive integers, since A322469 is one, and since there is a one-to-one mapping between any a(n) = k and some A322469(m) = 6*k - 2.
%C A307048 There is a hierarchy of such permutations of the positive integers derived by mapping the terms of the form 6*k - 2 to k:
%C A307048   Level 1: A322469
%C A307048   Level 2: A307048 (this sequence)
%C A307048   Level 3: A160016 = 2, 1, 4, 6, 8, 3, ... period of (3 even, 1 odd number)
%C A307048   Level 4: A000027 = 1, 2, 3, 4 ... (the positive integers)
%C A307048   Level 5: A000027
%e A307048 Table U(i, j) begins:
%e A307048    i\j   1  2  3  4  5  6  7
%e A307048    -------------------------
%e A307048    1:
%e A307048    4:          2
%e A307048    7:                   1
%e A307048   10:
%e A307048   13:          6
%e A307048   16:                5
%e A307048   19:
%e A307048   22:         10
%e A307048   25:             4
%e A307048   28:
%e A307048   31:         14
%e A307048 -----
%e A307048 T(4, 3) = 10 = 6*2 - 2, therefore U(4, 3) = 2.
%e A307048 T(7, 6) =  4 = 6*1 - 2, therefore U(7, 6) = 1.
%o A307048 (Perl)
%o A307048 # Derived from A322469
%o A307048 use integer; my $n = 1; my $i = 1; my $an;
%o A307048 while ($i <= 1000) { # next row
%o A307048   $an = 4 * $i - 1; &term();
%o A307048   while ($an % 3 == 0) {
%o A307048     $an /= 3; &term();
%o A307048     $an *= 2; &term();
%o A307048   } # while divisible by 3
%o A307048   $i ++;
%o A307048 } # while next row
%o A307048 sub term {
%o A307048   if (($an + 2) % 6 == 0) {
%o A307048     my $bn = ($an + 2) / 6;
%o A307048     print "$n $bn\n"; $n ++;
%o A307048   }
%o A307048 }
%Y A307048 Cf. A000027, A160016, A322469.
%K A307048 nonn,easy
%O A307048 1,1
%A A307048 _Georg Fischer_, Mar 21 2019