This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307048 #12 Nov 13 2024 19:05:38 %S A307048 2,1,6,5,10,4,14,7,18,13,22,8,26,3,30,21,34,12,38,9,42,29,46,16,50,23, %T A307048 54,37,58,20,62,19,66,45,70,24,74,17,78,53,82,28,86,39,90,61,94,32,98, %U A307048 15,102,69,106,36,110,25,114,77,118,40,122,55 %N A307048 Permutation of the positive integers derived from the terms of A322469 having the form 6*k - 2. %C A307048 The sequence is the flattened form of an irregular table U(i, j) similar to table T(i, j) in A322469. U(i, j) = k is defined only for the elements T(i, j) which have the form 6*k - 2, so the table is sparsely filled. %C A307048 Like in A322469, the columns in table U contain arithmetic progressions. %C A307048 a(n) is a permutation of the positive integers, since A322469 is one, and since there is a one-to-one mapping between any a(n) = k and some A322469(m) = 6*k - 2. %C A307048 There is a hierarchy of such permutations of the positive integers derived by mapping the terms of the form 6*k - 2 to k: %C A307048 Level 1: A322469 %C A307048 Level 2: A307048 (this sequence) %C A307048 Level 3: A160016 = 2, 1, 4, 6, 8, 3, ... period of (3 even, 1 odd number) %C A307048 Level 4: A000027 = 1, 2, 3, 4 ... (the positive integers) %C A307048 Level 5: A000027 %e A307048 Table U(i, j) begins: %e A307048 i\j 1 2 3 4 5 6 7 %e A307048 ------------------------- %e A307048 1: %e A307048 4: 2 %e A307048 7: 1 %e A307048 10: %e A307048 13: 6 %e A307048 16: 5 %e A307048 19: %e A307048 22: 10 %e A307048 25: 4 %e A307048 28: %e A307048 31: 14 %e A307048 ----- %e A307048 T(4, 3) = 10 = 6*2 - 2, therefore U(4, 3) = 2. %e A307048 T(7, 6) = 4 = 6*1 - 2, therefore U(7, 6) = 1. %o A307048 (Perl) %o A307048 # Derived from A322469 %o A307048 use integer; my $n = 1; my $i = 1; my $an; %o A307048 while ($i <= 1000) { # next row %o A307048 $an = 4 * $i - 1; &term(); %o A307048 while ($an % 3 == 0) { %o A307048 $an /= 3; &term(); %o A307048 $an *= 2; &term(); %o A307048 } # while divisible by 3 %o A307048 $i ++; %o A307048 } # while next row %o A307048 sub term { %o A307048 if (($an + 2) % 6 == 0) { %o A307048 my $bn = ($an + 2) / 6; %o A307048 print "$n $bn\n"; $n ++; %o A307048 } %o A307048 } %Y A307048 Cf. A000027, A160016, A322469. %K A307048 nonn,easy %O A307048 1,1 %A A307048 _Georg Fischer_, Mar 21 2019