This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307058 #12 Jan 24 2024 10:08:52 %S A307058 1,1,1,2,4,7,12,21,38,68,120,212,377,670,1188,2107,3740,6638,11778, %T A307058 20898,37084,65808,116775,207212,367696,652478,1157815,2054524, %U A307058 3645730,6469316,11479734,20370656,36147506,64143372,113821732,201975429,358403220,635982680,1128544452,2002589998 %N A307058 Expansion of 1/(2 - Product_{k>=1} (1 + x^(2*k-1))). %C A307058 Invert transform of A000700. %H A307058 Alois P. Heinz, <a href="/A307058/b307058.txt">Table of n, a(n) for n = 0..2000</a> %F A307058 a(0) = 1; a(n) = Sum_{k=1..n} A000700(k)*a(n-k). %F A307058 From _G. C. Greubel_, Jan 24 2024: (Start) %F A307058 G.f.: (1+x)/(2*(1+x) - x*QPochhammer(-1/x; x^2)). %F A307058 G.f.: 1/( 2 - x^(1/24)*etx(x^2)^2/(eta(x^4)*eta(x)) ), where eta(x) is the Dedekind eta function. (End) %p A307058 g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d] %p A307058 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A307058 end: %p A307058 a:= proc(n) option remember; `if`(n=0, 1, %p A307058 add(a(n-i)*g(i), i=1..n)) %p A307058 end: %p A307058 seq(a(n), n=0..39); # _Alois P. Heinz_, Feb 09 2021 %t A307058 nmax = 39; CoefficientList[Series[1/(2 - Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x] %o A307058 (Magma) %o A307058 m:=80; %o A307058 R<x>:=PowerSeriesRing(Integers(), m); %o A307058 Coefficients(R!( 1/(2 - (&*[1 + x^(2*j-1): j in [1..m+2]])) )); // _G. C. Greubel_, Jan 24 2024 %o A307058 (SageMath) %o A307058 m=80; %o A307058 def f(x): return 1/(2 - product(1+x^(2*j-1) for j in range(1,m+3))) %o A307058 def A307058_list(prec): %o A307058 P.<x> = PowerSeriesRing(QQ, prec) %o A307058 return P( f(x) ).list() %o A307058 A307058_list(m) # _G. C. Greubel_, Jan 24 2024 %Y A307058 Cf. A000700, A055887, A302017, A304969, A307059. %Y A307058 Row sums of A341279. %K A307058 nonn %O A307058 0,4 %A A307058 _Ilya Gutkovskiy_, Mar 21 2019