This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307060 #15 Mar 17 2025 02:39:45 %S A307060 1,-1,1,-2,4,-7,12,-21,38,-68,120,-212,377,-670,1188,-2107,3740,-6638, %T A307060 11778,-20898,37084,-65808,116775,-207212,367696,-652478,1157815, %U A307060 -2054524,3645730,-6469316,11479734,-20370656,36147506,-64143372,113821732,-201975429,358403220,-635982680,1128544452,-2002589998 %N A307060 Expansion of 1/(2 - Product_{k>=1} 1/(1 + x^k)). %C A307060 Invert transform of A081362. %H A307060 G. C. Greubel, <a href="/A307060/b307060.txt">Table of n, a(n) for n = 0..1000</a> %F A307060 G.f.: 1/(2 - Product_{k>=1} (1 - x^(2*k-1))). %F A307060 a(0) = 1; a(n) = Sum_{k=1..n} A081362(k)*a(n-k). %F A307060 From _G. C. Greubel_, Jan 24 2024: (Start) %F A307060 G.f.: 1/(2 - QPochhammer(x)/QPochhammer(x^2)). %F A307060 G.f.: 1/(2 - x^(1/24)*eta(x)/eta(x^2)), where eta(x) is the Dedekind eta function. (End) %t A307060 nmax = 39; CoefficientList[Series[1/(2 - Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x] %o A307060 (Magma) %o A307060 m:=80; %o A307060 R<x>:=PowerSeriesRing(Integers(), m); %o A307060 Coefficients(R!( 1/(2 - (&*[1-x^(2*j-1): j in [1..m+2]])) )); // _G. C. Greubel_, Jan 24 2024 %o A307060 (SageMath) %o A307060 m=80; %o A307060 def f(x): return 1/( 2 - product(1-x^(2*j-1) for j in range(1,m+3)) ) %o A307060 def A307060_list(prec): %o A307060 P.<x> = PowerSeriesRing(QQ, prec) %o A307060 return P( f(x) ).list() %o A307060 A307060_list(m) # _G. C. Greubel_, Jan 24 2024 %Y A307060 Cf. A081362, A299208, A304969, A307058. %Y A307060 Cf. A307057, A307058, A307059, A307062, A307063. %K A307060 sign %O A307060 0,4 %A A307060 _Ilya Gutkovskiy_, Mar 21 2019