This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307063 #11 Jan 24 2024 10:09:51 %S A307063 1,1,3,10,28,85,252,745,2202,6530,19326,57194,169341,501242,1483816, %T A307063 4392531,13002772,38491212,113943278,337298400,998482338,2955742400, %U A307063 8749688247,25901125616,76673399424,226971213462,671887935923,1988945626648,5887744768722,17429103155892,51594226501776 %N A307063 Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)). %C A307063 Invert transform of A022629. %C A307063 a(n) is the number of compositions of n where there are A022629(k) sorts of part k. - _Joerg Arndt_, Jan 24 2024 %H A307063 G. C. Greubel, <a href="/A307063/b307063.txt">Table of n, a(n) for n = 0..1000</a> %F A307063 a(0) = 1; a(n) = Sum_{k=1..n} A022629(k)*a(n-k). %t A307063 nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x] %o A307063 (Magma) %o A307063 m:=80; %o A307063 R<x>:=PowerSeriesRing(Integers(), m); %o A307063 Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) )); %o A307063 (SageMath) %o A307063 m=80; %o A307063 def f(x): return 1/( 2 - product(1+j*x^j for j in range(1,m+3)) ) %o A307063 def A307063_list(prec): %o A307063 P.<x> = PowerSeriesRing(QQ, prec) %o A307063 return P( f(x) ).list() %o A307063 A307063_list(m) # _G. C. Greubel_, Jan 24 2024 %Y A307063 Cf. A022629, A299164, A304969, A320652. %Y A307063 Cf. A307057, A307058, A307059, A307060, A307062. %K A307063 nonn %O A307063 0,3 %A A307063 _Ilya Gutkovskiy_, Mar 21 2019