cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307076 Expansion of 1/(1 - Sum_{k>=1} lambda(k)*x^k), where lambda() is the Liouville function (A008836).

This page as a plain text file.
%I A307076 #6 Mar 23 2019 12:39:01
%S A307076 1,1,0,-2,-2,0,4,4,-2,-10,-6,10,22,4,-34,-46,16,102,86,-100,-272,-126,
%T A307076 370,650,60,-1138,-1384,526,3142,2532,-2936,-7952,-3440,10802,18426,
%U A307076 596,-33344,-38418,18716,91934,68400,-93402,-230962,-86236,330144,528880,-17298,-996040
%N A307076 Expansion of 1/(1 - Sum_{k>=1} lambda(k)*x^k), where lambda() is the Liouville function (A008836).
%C A307076 Invert transform of A008836.
%F A307076 a(0) = 1; a(n) = Sum_{k=1..n} A008836(k)*a(n-k).
%t A307076 nmax = 47; CoefficientList[Series[1/(1 - Sum[LiouvilleLambda[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%t A307076 a[0] = 1; a[n_] := a[n] = Sum[LiouvilleLambda[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 47}]
%Y A307076 Cf. A008836, A118206, A118207, A300663.
%K A307076 sign
%O A307076 0,4
%A A307076 _Ilya Gutkovskiy_, Mar 22 2019