This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307083 #13 Nov 12 2023 12:55:15 %S A307083 1,1,4,28,292,4408,97432,3231256,164789104,13170099856,1670220282544, %T A307083 338692348412320,110327835695333920,57892877044109184160, %U A307083 49019180876700301391680,67044425508546158335526080,148216012413625321252632612160,529829556146109541834263919553920 %N A307083 Expansion of 1/(1 - x/(1 - 3*x/(1 - 4*x/(1 - 7*x/(1 - 11*x/(1 - 18*x/(1 - ... - Lucas(k)*x/(1 - ...)))))))), a continued fraction. %H A307083 Alois P. Heinz, <a href="/A307083/b307083.txt">Table of n, a(n) for n = 0..97</a> %F A307083 a(n) ~ c * phi^(n*(n+1)/2), where phi = A001622 is the golden ratio and c = 5.62026823201787715079864730026619553810473701484813959397175006212578036... - _Vaclav Kotesovec_, Sep 18 2021 %p A307083 L:= proc(n) option remember; (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1] end: %p A307083 b:= proc(x, y) option remember; `if`(x=0 and y=0, 1, %p A307083 `if`(x>0, b(x-1, y)*L(y-x+1), 0)+`if`(y>x, b(x, y-1), 0)) %p A307083 end: %p A307083 a:= n-> b(n$2): %p A307083 seq(a(n), n=0..17); # _Alois P. Heinz_, Nov 12 2023 %t A307083 nmax = 17; CoefficientList[Series[1/(1 + ContinuedFractionK[-LucasL[k] x, 1, {k, 1, nmax}]), {x, 0, nmax}], x] %Y A307083 Cf. A000204, A001622, A206742, A307082. %K A307083 nonn %O A307083 0,3 %A A307083 _Ilya Gutkovskiy_, Mar 23 2019