This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307091 #22 Mar 17 2023 11:29:42 %S A307091 1,1,0,-8,-34,-74,0,736,3334,7606,0,-80464,-372436,-864772,0,9400192, %T A307091 43976774,103061158,0,-1137528688,-5355697084,-12623082284,0, %U A307091 140697113792,665238165916,1574005263676,0,-17663830073504,-83769667651816,-198760191043784,0 %N A307091 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k)^2. %H A307091 Seiichi Manyama, <a href="/A307091/b307091.txt">Table of n, a(n) for n = 0..1879</a> %F A307091 a(4*n+2) = 0 for n >= 0. %F A307091 From _Peter Bala_, Mar 17 2023: (Start) %F A307091 n*(n-1)*(6*n^2-24*n+23)a(n) = 4*(n-1)*(2*n-3)*(3*n^2-9*n+4)*a(n-1) - 4*(3*n^2-9*n+4)*(2*n-3)^2*a(n-2) - 8*(n-2)*(2*n-3)*(3*n^2-9*n+4)*a(n-3) - 4*(n-2)*(n-3)*(6*n^2-12*n+5)*a(n-4) with a(0) = 1, a(1) = 1, a(2) = 0 and a(3) = -8. %F A307091 a(n) = hypergeom([(1-n)/2, (1-n)/2, -n/2, -n/2], [1/2, 1/2, 1], -1). %F A307091 Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 3. (End) %t A307091 Table[Sum[(-1)^k*Binomial[n, 2*k]^2, {k, 0, Floor[n/2]}], {n, 0, 30}] (* _Vaclav Kotesovec_, Mar 24 2019 *) %t A307091 Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1/2, 1/2, 1}, -1], {n, 0, 30}] (* _Vaclav Kotesovec_, Mar 24 2019 *) %o A307091 (PARI) {a(n) = sum(k=0, n\2, (-1)^k*binomial(n, 2*k)^2)} %Y A307091 Central coefficients of number triangle A307090. %Y A307091 Cf. A000984, A119358, A119363. %K A307091 sign,easy %O A307091 0,4 %A A307091 _Seiichi Manyama_, Mar 24 2019