A307095 Let K_n = prefix of length n of Kolakoski sequence A000002; a(n) is the length of the longest palindromic suffix of K_n.
1, 1, 2, 4, 2, 4, 3, 3, 2, 4, 6, 5, 7, 2, 4, 3, 5, 7, 9, 11, 13, 3, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 6, 3, 2, 4, 6, 5, 7, 2, 4, 3, 3, 2, 4, 6, 8, 10, 12, 6, 5, 7, 2, 4, 3, 5, 7, 9, 11, 13, 3, 2, 4, 6, 5, 7, 2, 4, 3, 5, 7, 6, 3, 2, 4, 6, 8, 10, 12, 2, 4
Offset: 1
Keywords
Examples
The first terms, alongside K_n with longest palindromic suffix in parentheses, are: n a(n) K_n -- ---- ------------------ 1 1 (1) 2 1 1(2) 3 2 1(22) 4 4 (1221) 5 2 122(11) 6 4 12(2112) 7 3 1221(121) 8 3 12211(212) 9 2 1221121(22) 10 4 122112(1221) 11 6 12211(212212) 12 5 1221121(22122) 13 7 122112(1221221) 14 2 122112122122(11) 15 4 12211212212(2112) 16 3 1221121221221(121)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A307095
Programs
-
PARI
See Links section.
Formula
a(n+1) <= a(n) + 2.