A307099 Positive integers k at which k/log_2(k) is at a record closeness to an integer, without actually being an integer.
3, 10, 51, 189, 227, 356, 578, 677, 996, 3389, 38997, 69096, 149462, 2208495, 3459604, 4952236, 6710605, 48098656, 81762222, 419495413
Offset: 1
Examples
10/log_2(10) = 3.010... ~ 3, which is an integer. Or, 2^10 = 1024, which is close to 1000 = 10^3. 996/log_2(996) = 99.99998060...
Crossrefs
Cf. A001146.
Programs
-
Mathematica
With[{s = {-1}~Join~Array[-Abs[Round[#] - #] &[#/Log2[#]] /. 0 -> -1 &, 10^5, 2]}, Rest@ Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Mar 27 2019 *)
-
Python
from math import floor,ceil,log x=2 mindif=1 while True: logn=x/log(x,2) dif=min(logn-floor(logn),ceil(logn)-logn) if dif!=0 and mindif>dif: mindif=dif print(x,end=", ") x+=1
Comments