A307113 Number of highly composite numbers (m in A002182) in the interval p_k# <= m < p_(k+1)#, where p_i# = A002110(i).
1, 2, 3, 5, 6, 8, 10, 12, 13, 15, 14, 15, 17, 16, 16, 19, 17, 21, 19, 20, 26, 22, 25, 26, 25, 29, 28, 26, 27, 28, 29, 33, 33, 34, 37, 37, 35, 35, 39, 37, 38, 38, 37, 37, 38, 38, 41, 38, 37, 36, 37, 37, 40, 44, 44, 45, 44, 44, 45, 45, 49, 48, 52, 51, 53, 52, 51
Offset: 0
Keywords
Examples
a(3) = 5 since there are 5 highly composite numbers A002110(3) <= m < A002110(4), i.e., 30 <= m < 210: {36, 48, 60, 120, 180}. n a(n) m such that A002110(n) <= m < A002110(n+1) -------------------------------------------------------------------- 0 1 1 1 2 2 4 2 3 6 12 24 3 5 36 48 60 120 180 4 6 240 360 720 840 1260 1680 5 8 2520 5040 7560 10080 15120 20160 25200 27720 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..4149
- A. Flammenkamp, List of the first 779,674 highly composite numbers
Programs
-
Mathematica
Block[{nn = 8, P, s}, P = Nest[Append[#, #[[-1]] Prime@ Length@ #] &, {1}, nn + 1]; s = DivisorSigma[0, Range@ P[[nn + 1]] ]; s = Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]; Table[Count[s, _?(If[! IntegerQ@ #, 1, #] &@ P[[i]] <= # < P[[i + 1]] &)], {i, nn}]]
Comments