cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307133 T(n,m) = number of k <= A002110(n) such that A001221(k) = m, where k is a term in A025487.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 9, 4, 1, 1, 11, 21, 15, 5, 1, 1, 14, 38, 36, 18, 6, 1, 1, 18, 64, 79, 53, 23, 7, 1, 1, 23, 97, 148, 122, 63, 26, 7, 1, 1, 27, 140, 258, 251, 157, 76, 30, 7, 1, 1, 32, 196, 425, 480, 349, 195, 89, 33, 8, 1, 1, 37, 261, 655, 853
Offset: 0

Views

Author

Michael De Vlieger, Mar 26 2019

Keywords

Comments

Terms m in A025487 are products of p_i# in A002110.
The primorial A002110(n) is the smallest number k that is the product of the n smallest primes (i.e., A001221(k) = n) and is a subset of A025487.

Examples

			Row 3 = {1,4,3,1}. The terms k in A025487 such that k <= A002110(3) are {1, 2, 4, 6, 8, 12, 16, 24, 30}. Of these, 1 has 0 distinct prime divisors, 4 {2,4,8,16} have 1 distinct prime divisor, 3 {6,12,24} have 2 distinct prime divisors, and 1 {30} has 3 distinct prime divisors.
Triangle begins:
   0: 1
   1: 1   1
   2: 1   2    1
   3: 1   4    3    1
   4: 1   7    9    4     1
   5: 1  11   21   15     5     1
   6: 1  14   38   36    18     6    1
   7: 1  18   64   79    53    23    7    1
   8: 1  23   97  148   122    63   26    7    1
   9: 1  27  140  258   251   157   76   30    7    1
  10: 1  32  196  425   480   349  195   89   33    8   1
  11: 1  37  261  655   853   700  443  228  102   37   9   1
  12: 1  42  340  975  1438  1323  928  533  268  119  41  11   1
  ...
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 12, f, w}, f[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1], g}, g[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ g@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]]] &, ww]]; s = MapAt[Flatten, f@ nn, 1]; Array[Function[P, TakeWhile[Map[Count[#, _?(# <= P &)] &, s, {1}], # > 0 &]]@ Product[Prime@ i, {i, #}] &, nn + 1, 0]] // Flatten

Formula

T(n,0) = T(n,n) = A000012(n).
T(n,1) = A054850(n).
A098719(n) = sum of row n.