A307133 T(n,m) = number of k <= A002110(n) such that A001221(k) = m, where k is a term in A025487.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 9, 4, 1, 1, 11, 21, 15, 5, 1, 1, 14, 38, 36, 18, 6, 1, 1, 18, 64, 79, 53, 23, 7, 1, 1, 23, 97, 148, 122, 63, 26, 7, 1, 1, 27, 140, 258, 251, 157, 76, 30, 7, 1, 1, 32, 196, 425, 480, 349, 195, 89, 33, 8, 1, 1, 37, 261, 655, 853
Offset: 0
Examples
Row 3 = {1,4,3,1}. The terms k in A025487 such that k <= A002110(3) are {1, 2, 4, 6, 8, 12, 16, 24, 30}. Of these, 1 has 0 distinct prime divisors, 4 {2,4,8,16} have 1 distinct prime divisor, 3 {6,12,24} have 2 distinct prime divisors, and 1 {30} has 3 distinct prime divisors. Triangle begins: 0: 1 1: 1 1 2: 1 2 1 3: 1 4 3 1 4: 1 7 9 4 1 5: 1 11 21 15 5 1 6: 1 14 38 36 18 6 1 7: 1 18 64 79 53 23 7 1 8: 1 23 97 148 122 63 26 7 1 9: 1 27 140 258 251 157 76 30 7 1 10: 1 32 196 425 480 349 195 89 33 8 1 11: 1 37 261 655 853 700 443 228 102 37 9 1 12: 1 42 340 975 1438 1323 928 533 268 119 41 11 1 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..560 (rows 0 <= n <= 1000).
Programs
-
Mathematica
Block[{nn = 12, f, w}, f[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1], g}, g[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ g@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]]] &, ww]]; s = MapAt[Flatten, f@ nn, 1]; Array[Function[P, TakeWhile[Map[Count[#, _?(# <= P &)] &, s, {1}], # > 0 &]]@ Product[Prime@ i, {i, #}] &, nn + 1, 0]] // Flatten
Comments