This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307134 #24 May 08 2021 08:28:39 %S A307134 7688,70688,95048,120125,131072,186003,219488,219501,265837,286443, %T A307134 304175,371293,412232,464648,465125,596183,628864,699867,729632, %U A307134 732736,834632,860672,1104500,1119371,1162213,1173512,1257728,1290496,1318707,1431125,1438208,1472207,1527752,1597696,1601613 %N A307134 Terms of A216427 that are the sum of two coprime terms of A216427. %C A307134 It is possible for a term of the sequence to be such a sum in more than one way, e.g., 1119371 = 215168 + 904203 = 366368 + 753003. %C A307134 There are parametric solutions, and in particular the sequence is infinite. For example, 3^3*(-44100*k^2 - 21140*k + 471)^2 + 5^3*(-26460*k^2 + 4788*k + 865)^2 = 2^3*(132300*k^2 + 8820*k + 3527)^2, and these are coprime unless k==3 (mod 13). %H A307134 Robert Israel, <a href="/A307134/b307134.txt">Table of n, a(n) for n = 1..468</a> %e A307134 a(3)=95048 is in the sequence because 95048 = 2^3*109^2 = 45125 + 49923 = 5^3*19^2 + 3^3*43^2, and gcd(45125,49923)=1. %p A307134 N:= 10^6: # to get terms <= N %p A307134 A23:= {seq(seq(x^2*y^3, x= 2.. floor(sqrt(N/abs(y)^3))),y=2..floor(N^(1/3)))}: n:=nops(A23): %p A307134 Res:= NULL: %p A307134 for k from 1 to n do %p A307134 z:= A23[k]; %p A307134 for i from 1 to n do %p A307134 x:= A23[i]; %p A307134 if 2*x > z then break fi; %p A307134 if member(z-x,A23) and igcd(z,x)=1 then Res:= Res, z; break fi %p A307134 od od: %p A307134 Res; %Y A307134 Cf. A216427. %K A307134 nonn %O A307134 1,1 %A A307134 _Robert Israel_, Mar 26 2019