cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307134 Terms of A216427 that are the sum of two coprime terms of A216427.

This page as a plain text file.
%I A307134 #24 May 08 2021 08:28:39
%S A307134 7688,70688,95048,120125,131072,186003,219488,219501,265837,286443,
%T A307134 304175,371293,412232,464648,465125,596183,628864,699867,729632,
%U A307134 732736,834632,860672,1104500,1119371,1162213,1173512,1257728,1290496,1318707,1431125,1438208,1472207,1527752,1597696,1601613
%N A307134 Terms of A216427 that are the sum of two coprime terms of A216427.
%C A307134 It is possible for a term of the sequence to be such a sum in more than one way, e.g., 1119371 = 215168 + 904203 = 366368 + 753003.
%C A307134 There are parametric solutions, and in particular the sequence is infinite. For example, 3^3*(-44100*k^2 - 21140*k + 471)^2 + 5^3*(-26460*k^2 + 4788*k + 865)^2 = 2^3*(132300*k^2 + 8820*k + 3527)^2, and these are coprime unless k==3 (mod 13).
%H A307134 Robert Israel, <a href="/A307134/b307134.txt">Table of n, a(n) for n = 1..468</a>
%e A307134 a(3)=95048 is in the sequence because 95048 = 2^3*109^2 = 45125 + 49923 = 5^3*19^2 + 3^3*43^2, and gcd(45125,49923)=1.
%p A307134 N:= 10^6: # to get terms <= N
%p A307134 A23:= {seq(seq(x^2*y^3, x= 2.. floor(sqrt(N/abs(y)^3))),y=2..floor(N^(1/3)))}: n:=nops(A23):
%p A307134 Res:= NULL:
%p A307134 for k from 1 to n do
%p A307134   z:= A23[k];
%p A307134   for i from 1 to n do
%p A307134     x:= A23[i];
%p A307134     if 2*x > z then break fi;
%p A307134     if member(z-x,A23) and igcd(z,x)=1 then  Res:= Res, z; break fi
%p A307134 od od:
%p A307134 Res;
%Y A307134 Cf. A216427.
%K A307134 nonn
%O A307134 1,1
%A A307134 _Robert Israel_, Mar 26 2019