cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.

This page as a plain text file.
%I A307154 #32 Feb 16 2025 08:33:55
%S A307154 8,2,3,6,5,2,9,6,3,1,7,7,3,3,8,3,3,6,9,0,0,6,7,1,8,7,7,8,1,1,6,4,7,8,
%T A307154 8,7,2,1,3,9,2,3,6,6,2,0,5,3,9,2,9,8,6,8,0,9,1,4,3,7,2,3,5,0,0,7,1,8,
%U A307154 2,2,0,1,8,0,9,8,1,2,0,0,7,9,0,9,0,5,5,8,9,2,6,4,8,7,4,0,3,0,3,3,7,1,9,6,3,8,5,4,5,9,2,8,8,9,7,9,3,3,4,2,4,8,8,7,7,2,1,2,7,1,9,6
%N A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.
%C A307154 Solution of the discrete parking problem when infinite lattice randomly filled with 3-length segments.
%C A307154 Solution of the discrete parking problem when infinite lattice randomly filled with 2-length segments is equal to 1-1/e^2 (see A219863).
%C A307154 Also, the limit of a(n) = (3 + 2*(n-3)*a(n-3) + (n-1)*(n-3)*a(n-1))/(n*(n-2)); a(0) = 0; a(1) = 0; a(2) = 0 as n tends to infinity.
%C A307154 If the length of the segments that randomly cover infinite lattice tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).
%H A307154 D. G. Radcliffe, <a href="https://mathblag.files.wordpress.com/2012/12/fatmen.pdf">Fat men sitting at a bar</a>
%H A307154 Philipp O. Tsvetkov, <a href="https://doi.org/10.1038/s41598-020-77896-0">Stoichiometry of irreversible ligand binding to a one-dimensional lattice</a>, Scientific Reports, Springer Nature (2020) Vol. 10, Article number: 21308.
%H A307154 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DawsonsIntegral.html">Dawson's Integral</a>
%F A307154 Equals 3*(Dawson(2) - Dawson(1)/e^3).
%F A307154 Equals 3*sqrt(Pi)*(erfi(2) - erfi(1)) / (2*exp(4)).
%e A307154 0.8236529631773383369006718778116478872139236620539298680914372350071822...
%p A307154 evalf(3*sqrt(Pi)*(erfi(2)-erfi(1))/(2*exp(4)), 120) # _Vaclav Kotesovec_, Mar 28 2019
%t A307154 N[-((3 DawsonF[1])/E^3) + 3 DawsonF[2], 200] // RealDigits
%o A307154 (PARI) -imag(3*sqrt(Pi)*(erfc(2*I) - erfc(1*I)) / (2*exp(4))) \\ _Michel Marcus_, May 10 2019
%Y A307154 Cf. A050996, A087654, A099288, A219863, A307131, A307132.
%K A307154 nonn,cons
%O A307154 0,1
%A A307154 _Philipp O. Tsvetkov_, Mar 27 2019