This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307161 #18 May 28 2019 03:47:18 %S A307161 1,2,17,37,50,56,391,919,1399,2829,6249,13664,28829,62272,67195, %T A307161 585391,5504271,6798541,10763933,866660818,3830393407,11044287758, %U A307161 23058607363,83159875881,206501883259,297734985607,1087473543732,1184060078117,2789730557061,2821551579466,3529184155643 %N A307161 Numbers n such that A307159(n) = Sum_{k=1..n} bsigma(k) is divisible by n, where bsigma(k) is the sum of bi-unitary divisors of k (A188999). %C A307161 The bi-unitary version of A056550. %C A307161 The corresponding quotients are 1, 2, 13, 28, 38, 43, ... (see the link for more values). %C A307161 a(32) > 10^13. - _Giovanni Resta_, May 28 2019 %H A307161 Amiram Eldar and Giovanni Resta, <a href="/A307161/a307161_2.txt">Table of n, a(n), A307159(a(n))/a(n) for n=1..31</a> %t A307161 fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); seq={};s = 0; Do[s = s + bsigma[n]; If[Divisible[s,n], AppendTo[seq,n]], {n, 1, 10^6}]; seq %Y A307161 Cf. A056550, A064611, A188999, A307043, A307159. %K A307161 nonn %O A307161 1,2 %A A307161 _Amiram Eldar_, Mar 27 2019 %E A307161 a(23)-a(31) from _Giovanni Resta_, Apr 20 2019