cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307162 a(n) is the smallest k such that A319100(k) = A025610(n).

Original entry on oeis.org

1, 3, 8, 7, 24, 21, 120, 56, 1320, 63, 168, 22440, 252, 840, 516120, 504, 9240, 819, 14967480, 2184, 157080, 3276, 613666680, 10920, 3612840, 6552, 28842333960, 120120, 15561, 104772360, 32760, 1528643699880, 2042040, 62244, 4295666760, 207480, 90189978292920, 46966920, 124488
Offset: 1

Views

Author

Jianing Song, Mar 27 2019

Keywords

Comments

A025610 is the range of A319100.
Let b = A319100. Note that:
- if k is an odd number, then b(2*k) = b(k), b(4*k) = 2*b(k), b(2^e*k) = 4*b(k) for e >= 3;
- if k is not divisible by 3, then b(3*k) = 2*b(k), b(3^e*k) = 6*b(k) for e >= 2;
- for all primes p > 3, if k is not divisible by p, then b(p^e*k) = b(p*k).
As a result, it is easy to see that for every n, a(n) is not congruent to 2 modulo 4 and is not divisible by 16 or 27 or p^2 for any prime p > 3.

Crossrefs

Programs

  • PARI
    isA025610(n) = omega(6*n)==2&&valuation(n,2)>=valuation(n,3)
    b(n) = if(isA025610(n), i=1; while(A319100(i)!=n, i++); i)
    for(n=1, 216, if(isA025610(n), print1(b(n), ", "))) \\ See A319100 for its program
    
  • PARI
    p(j) = my(t=0,v=vector(j)); for(k=1, oo, if(prime(k)%6==1, t++; v[t]=prime(k)); if(t==j, return(v)))
    q(i) = my(t=0,v=vector(i)); for(k=1, oo, if(prime(k)%6==5, t++; v[t]=prime(k)); if(t==i, return(v)))
    b(i,j) = {
    if(j<=1 && i<=2, my(M=[1,3,8;7,21,56]); return(M[j+1,i+1]));
    if(j==0 && i>=3, my(Q=q(i-3)); return(24*prod(k=1, i-3, Q[k])));
    if(j>=2 && i<=2, my(P=p(j-1), w=[9,36,72]); return(w[i+1]*prod(k=1, j-1, P[k])));
    if(j>=1 && i>=3, my(P=p(j), Q=q(i-2)); return(prod(k=1, j-1, P[k])*8*prod(k=1, i-3, Q[k])*min(9*Q[i-2], 3*P[j])));
    }
    list(lim) = my(v=A025610(lim), u=vector(#v)); for(k=1, #v, my(i=valuation(v[k],2)-valuation(v[k],3), j=valuation(v[k],3)); u[k]=b(i,j)); u \\ Jianing Song, Jun 04 2019, See A025610 for its program

Formula

Let p(j) = A002476(j), q(i) = A007528(i), P(j) = Product_{k=1..j} p(k) = A121940(j) if j > 0, Q(i) = Product_{k=1..i} q(k) = A057130(i) if i > 0. If A025610(n) = 2^i*6^j, then:
(a) if i = 0, then a(n) = 1 if j = 0, 7 if j = 1 and 9*P(j-1) if j >= 2;
(b) if i = 1, then a(n) = 3 if j = 0, 21 if j = 1 and 36*P(j-1) if j >= 2;
(c) if i = 2, then a(n) = 8 if j = 0, 56 if j = 1 and 72*P(j-1) if j >= 2;
(d) if i >= 3, then a(n) = 24*Q(i-3) if j = 0 and P(j-1)*8*Q(i-3)*min{9*q(i-2), 3*p(j)} if j >= 1. [Rewritten by Jianing Song, Jun 04 2019]