cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307164 Maximum number of intercalates in a diagonal Latin square of order n.

This page as a plain text file.
%I A307164 #70 Mar 12 2025 16:15:02
%S A307164 0,0,0,12,4,9,30,112,72
%N A307164 Maximum number of intercalates in a diagonal Latin square of order n.
%C A307164 An intercalate is a 2 X 2 subsquare of a Latin square.
%C A307164 0 <= A307163(n) <= A307164(n) <= A092237(n). - _Eduard I. Vatutin_, Sep 21 2020
%C A307164 a(10) >= 109, a(11) >= 172, a(12) >= 324, a(13) >= 180, a(14) >= 391, a(15) >= 630, a(16) >= 960, a(17) >= 736, a(18) >= 547, a(19) >= 457, a(20) >= 1100, a(21) >= 785, a(22) >= 887, a(23) >= 899, a(24) >= 1680, a(25) >= 1700, a(26) >= 1299, a(27) >= 1372, a(28) >= 2892. - _Eduard I. Vatutin_, May 31 2021, updated Mar 02 2025
%C A307164 If, in theory, all unordered pairs of rows and columns form intercalate in their intersection, total number of intercalates will be (n*(n-1))^2, so a(n) <= (n*(n-1))^2, a(n) is asymptotically less than O(n^4). In practice a(n) << (n*(n-1))^2. - _Eduard I. Vatutin_, Mar 05 2025
%H A307164 Eduard I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=92687#post92687">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian).
%H A307164 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1346">About the maximum number of intercalates in a diagonal Latin squares of order 9</a> (in Russian).
%H A307164 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2475">About the heuristic approximation of the spectrum of number of intercalates in diagonal Latin squares of order 14</a> (in Russian).
%H A307164 Eduard I. Vatutin, <a href="/A307164/a307164_4.txt">Proving list (best known examples)</a>.
%H A307164 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, <a href="https://doi.org/10.1007/978-3-030-66895-2_9">Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10</a>, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146.
%H A307164 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H A307164 Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Alexandr M. Albertyan, and Ilya I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17 (in Russian).
%H A307164 E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_high_orders_1.pdf">Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9</a> (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
%H A307164 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A307164 From _Eduard I. Vatutin_, May 31 2021: (Start)
%e A307164 One of the best known diagonal Latin squares of order n=5
%e A307164   0 1 2 3 4
%e A307164   4 2 0 1 3
%e A307164   1 4 3 2 0
%e A307164   3 0 1 4 2
%e A307164   2 3 4 0 1
%e A307164 has 4 intercalates:
%e A307164   . . 2 3 .   . . . . .   . . . . .   . . . . .
%e A307164   . . . . .   . . 0 . 3   . . . . .   . . . . .
%e A307164   . . 3 2 .   . . 3 . 0   1 . 3 . .   . 4 3 . .
%e A307164   . . . . .   . . . . .   3 . 1 . .   . . . . .
%e A307164   . . . . .   . . . . .   . . . . .   . 3 4 . .
%e A307164 so a(5)=4. (End)
%Y A307164 Cf. A092237, A307163, A345760.
%K A307164 nonn,more,hard
%O A307164 1,4
%A A307164 _Eduard I. Vatutin_, Mar 27 2019
%E A307164 a(9) added by _Eduard I. Vatutin_, Sep 21 2020