This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307175 #34 Oct 18 2024 17:59:04 %S A307175 4,7,9,13,15,18,22,26,27,32,33,40,42,48,51,55,58,62,66,71,75,80,85,85, %T A307175 91,97,103,105,111,112,120,121,129,131,139,142,143,153,156,158,168, %U A307175 172,175,178,181,193,197,201,206,210,215,220,225,230,235,241,246,252 %N A307175 Smallest power to which 1+1/n must be raised in order for an interval [k,k+1], with k an integer, to be skipped. %C A307175 Here the skipping of an interval means that the interval falls strictly between (1+1/n)^(a(n)-1) and (1+1/n)^a(n). %C A307175 The sequence is not monotonically increasing; a(24) = a(25) and a(62) > a(63) are the first counterexamples. %C A307175 Asymptotic to n * log(n), and as such also to the prime numbers (A000040). %e A307175 1.1^26 = 11.918... and 1.1^27 = 13.109...; [12,13] is skipped, and this is the first time this happens, thus a(10)=27. %t A307175 a[n_, m_] := Reduce[(1+1/n)^(m-1) < k < k+1 < (1+1/n)^m, k, Integers]; %t A307175 a[n_] := For[m = 1, True, m++, If[a[n, m] =!= False, Return[m]]]; %t A307175 Table[a[n], {n, 2, 100}] (* _Jean-François Alcover_, Jul 07 2019 *) %o A307175 (PARI) a(n) = my(k=2, last=1+1/n); while(floor(new = (1+1/n)^k) - ceil(last) != 1, k++; last = new); k; \\ _Michel Marcus_, Mar 30 2019 %o A307175 (Python) %o A307175 from math import floor, log %o A307175 def get_a_of_n(i): %o A307175 x=1+1/i %o A307175 j=i %o A307175 while floor(log(j, x))!=floor(log(j+1, x)): %o A307175 j+=1 %o A307175 return floor(log(j, x))+1 %o A307175 def main(): %o A307175 step=1 %o A307175 i=2 %o A307175 while True: %o A307175 y=get_a_of_n(i) %o A307175 print(y, end=", ") %o A307175 i+=step %Y A307175 Cf. A031435. %K A307175 nonn %O A307175 2,1 %A A307175 _Alex Costea_, Mar 27 2019