cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307184 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 4-length segments.

This page as a plain text file.
%I A307184 #23 Mar 24 2021 22:59:09
%S A307184 8,0,3,8,9,3,4,7,9,9,1,5,3,7,6,9,7,2,6,6,6,2,9,7,4,1,9,5,0,3,2,1,3,4,
%T A307184 2,0,5,4,6,8,7,9,1,6,4,8,5,7,7,0,8,3,5,9,2,3,9,7,2,9,9,3,2,8,0,7,0,9,
%U A307184 4,5,6,0,9,5,0,7,6,0,3,6,1,5
%N A307184 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 4-length segments.
%C A307184 The solution of the discrete parking problem when infinite lattice randomly filled with L-length segments at L=4.
%C A307184 At L=3 it is equal to 3*(Dawson(2) - Dawson(1)/e^3) (see A307154).
%C A307184 At L=2 it is equal to 1-1/e^2 (see A219863).
%C A307184 The general solution of the discrete parking problem when infinite lattice randomly filled with L-length segments is equal to L*e(-2H(L-1))*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3 + ... + t^(L-1)/(L-1))) dx, where H(L) is harmonic number.
%C A307184 Also, the limit of the following recurrence as n tends to infinity: a(n) = (4 + 2(n-4)*a(n-4) + (n-1)*(n-4)*a(n-1))/(n*(n-3)); a(0) = 0; a(1) = 0; a(2) = 0; a(3) = 0.
%C A307184 If L tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).
%H A307184 D. G. Radcliffe, <a href="https://mathblag.files.wordpress.com/2012/12/fatmen.pdf">Fat men sitting at a bar</a>
%H A307184 Philipp O. Tsvetkov, <a href="https://doi.org/10.1038/s41598-020-77896-0">Stoichiometry of irreversible ligand binding to a one-dimensional lattice</a>, Scientific Reports, Springer Nature (2020) Vol. 10, Article number: 21308.
%F A307184 4*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3)) dx / e^(11/3).
%e A307184 0.80389347991537697266629741950321342054687916485770835923972993280709456095...
%p A307184 evalf(Integrate(4*exp(2*(t + t^2/2 + t^3/3) - 11/3), t= 0..1), 120); # _Vaclav Kotesovec_, Mar 28 2019
%t A307184 RealDigits[ N[(4*Integrate[E^(2*(t + t^2/2 + t^3/3)), {t, 0, 1}])/E^(11/3), 200]][[1]]
%o A307184 (PARI) intnum(t=0, 1, 4*exp(2*(t + t^2/2 + t^3/3) - 11/3)) \\ _Michel Marcus_, May 10 2019
%Y A307184 Cf. A219863, A050996, A307132, A307131, A307154.
%K A307184 nonn,cons
%O A307184 0,1
%A A307184 _Philipp O. Tsvetkov_, Mar 28 2019