cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307208 a(n) is the forgotten index of the Fibonacci cube Gamma(n).

This page as a plain text file.
%I A307208 #19 Mar 30 2019 08:40:00
%S A307208 2,10,52,158,466,1192,2914,6722,14972,32286,67914,139824,282754,
%T A307208 562970,1105892,2146846,4124258,7849496,14815202,27752338,51632620,
%U A307208 95465502,175508250,320981472,584214530,1058602666,1910305300,3434059166,6151218034,10981579528
%N A307208 a(n) is the forgotten index of the Fibonacci cube Gamma(n).
%C A307208 The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
%C A307208 The forgotten topological index of a simple connected graph is the sum of the cubes of its vertex degrees.
%C A307208 In the Maple program, T(n,k) gives the number of vertices of degree k in the Fibonacci cube Gamma(n) (see A245825).
%H A307208 B. Furtula and I. Gutman, <a href="https://doi.org/10.1007/s10910-015-0480-z">A forgotten topological index</a>, J. Math. Chem. 53 (4), 1184-1190, 2015.
%H A307208 S. Klavžar, <a href="http://dx.doi.org/10.1007/s10878-011-9433-z">Structure of Fibonacci cubes: a survey</a>, J. Comb. Optim., 25, 2013, 505-522.
%H A307208 S. Klavžar, M. Mollard and M. Petkovšek, <a href="https://doi.org/10.1016/j.disc.2011.03.019">The degree sequence of Fibonacci and Lucas cubes</a>, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
%F A307208 a(n) = Sum_{k=1..n} T(n,k)*k^3 where T(n,k) = Sum_{i=0..k} binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1).
%F A307208 Conjectures from _Colin Barker_, Mar 29 2019: (Start)
%F A307208 G.f.: 2*x*(1 + x + 8*x^2 - 7*x^3 + 4*x^4 - 3*x^5 + 3*x^6) / (1 - x - x^2)^4.
%F A307208 a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n>8.
%F A307208 (End)
%e A307208 a(2) = 10 because the Fibonacci cube Gamma(2) is the path-tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the forgotten index is 1^3 + 1^3 + 2^3 = 10.
%p A307208 T := (n,k) -> add(binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1), i=0..k):
%p A307208 seq(add(T(n,k)*k^3, k=1..n), n=1..30);
%o A307208 (PARI) T(n,k) = sum(i=0, k, binomial(n-2*i, k-i)*binomial(i+1, n-k-i+1));
%o A307208 a(n) = sum(k=1, n, T(n,k)*k^3); \\ _Michel Marcus_, Mar 30 2019
%Y A307208 Cf. A245825, A306967, A307157.
%K A307208 nonn
%O A307208 1,1
%A A307208 _Emeric Deutsch_, Mar 28 2019