This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307218 #36 Sep 17 2024 19:10:24 %S A307218 1,1350,47520,1995840,59376240 %N A307218 Numbers x with k digits in base 2 (MSD(x)_2 = d_1, LSD(x)_2 = d_k) that are equal to the product of the positions of 1's (see examples and formula). %C A307218 If 0's instead of 1's are considered, then the sequence starts with 2, 12, 504, ... %C A307218 If the positions are counted with MSD(x)_2 = d_k and LSD(x)_2 = d_1 then the sequence starts with 1, 2, 6, 12, 576000, ... (see A161324). %C A307218 Next value greater than 10^12. - _Giovanni Resta_, Mar 29 2019 %F A307218 Solutions of the equation x = Product_{j=1..k} ((1/2)*(1+j+(-1)^d_j*(1-j))), where d_j are the digits of x in base 2. %e A307218 1350 in base 2 is 10101000110. The 1's are in positions 1, 3, 5, 9, 10 and 1*3*5*9*10 = 1350. %e A307218 47520 in base 2 is 1011100110100000. The 1's are in positions 1, 3, 4, 5, 8, 9, 11 and 1*3*4*5*8*9*11 = 47520. %e A307218 1995840 in base 2 is 111100111010001000000. The 1's are in positions 1, 2, 3, 4, 7, 8, 9, 11, 15 and 1*2*3*4*7*8*9*11*15 = 1995840. %p A307218 P:=proc(q) local a,b,k,n; for n from 1 to q do %p A307218 a:=convert(n,base,2); b:=1; for k from 1 to nops(a) do %p A307218 if a[k]=1 then b:=b*(nops(a)-k+1); fi; od; if b=n then print(n); %p A307218 fi; od; end: P(10^9); %o A307218 (PARI) b(n)=fromdigits(binary(n), 10); \\ A007088 %o A307218 is(n)={k=1;v=digits(b(n));for(j=2,#v,if(v[j]==1,k=k*j));k==n;} \\ _Jinyuan Wang_, Mar 29 2019 %Y A307218 Cf. A000030, A007088, A010879, A161324, A306286. %K A307218 nonn,base,more %O A307218 1,2 %A A307218 _Paolo P. Lava_, Mar 29 2019