A307222 Deficient numbers k at least one of whose divisors is the sum of other distinct divisors of k.
45, 63, 99, 105, 110, 117, 130, 135, 154, 165, 170, 182, 189, 195, 225, 231, 238, 255, 266, 273, 285, 286, 297, 315, 322, 345, 351, 357, 374, 385, 399, 405, 418, 429, 441, 455, 459, 475, 483, 494, 495, 506, 513, 525, 561, 567, 585, 595, 598, 609, 621, 627, 646
Offset: 1
Keywords
Examples
45 is in this sequence since its divisors are 1, 3, 5, 9, 15, 45 whose sum is 78 < 90, and thus it is deficient, yet the divisor 15 is the sum of other divisors of 45: 1 + 5 + 9.
Links
- S. J. Benkoski and P. Erdős, On weird and pseudoperfect numbers, Math. Comp., 28 (1974), pp. 617-623. Alternate link; 1975 corrigendum
- Paul Erdős, Some extremal problems in combinatorial number theory, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio (1970), pp. 123-133.
Programs
-
Mathematica
T[n_, k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; seqQ[n_] := DivisorSigma[1, n] < 2n && Max[T[n, #] & /@ Range[DivisorSigma[1, n]]] > 1; Select[Range[1000], seqQ]
Comments