This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307225 #16 Jun 04 2020 04:39:33 %S A307225 1,6,12,24,30,36,48,60,72,84,90,96,108,120,168,180,240,336,360,420, %T A307225 480,504,540,600,630,660,672,720,840,1008,1080,1260,1440,1680,2160, %U A307225 2520,3360,3780,3960,4200,4320,4620,4680,5040,6300,6720,7560,9240,10080,12600,13860,15120,18480 %N A307225 Superpractical numbers: practical numbers m with a record total number of combinations for presenting the set of numbers 1 <= k <= sigma(m) as sums of distinct divisors of m. %C A307225 Let c(m, k) be the number of ways to present k as the sum of distinct divisors of m, for k=1..sigma(m) (A307223). %C A307225 Let C(m) = Product_{k=1..sigma(m)} c(m, k) (A307224). %C A307225 This sequence list (practical) numbers m with a record value of C(m). %C A307225 The corresponding values of C(m) are 1, 8, 1088391168, 103312130400000000000000000000000000, ... %t A307225 T[n_, k_] := Module[{d = Divisors[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, k}], k]]; f[n_] := Times @@ (T[n, #] & /@ Range[DivisorSigma[1, n]]); s = {}; fmax = 0; Do[f1 = f[n]; If[f1 > fmax, fmax = f1; AppendTo[s, n]], {n, 1, 100}]; s %o A307225 (PARI) upto(n) = {my(v = vector(n, i, print1(i", "); C(i)), r = -1, res = List()); %o A307225 for(i = 1, n, c = v[i]; if(c > r, listput(res, i); r = c)); res} %o A307225 C(n) = {my(v = vector(sigma(n) + 1), t = 1, d = divisors(n)); v[1] = 1; for(i = 1, #d, for(j = 1, t, v[j + d[i]] += v[j] ); t+=d[i] ); vecprod(v) } \\ _David A. Corneth_, Mar 29 2019 %Y A307225 Cf. A005153, A307223, A307224. %K A307225 nonn %O A307225 1,2 %A A307225 _Amiram Eldar_, Mar 29 2019 %E A307225 More terms from _David A. Corneth_, Mar 29 2019