cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307230 Number of divisible pairs of distinct positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 5, 7, 8, 9, 11, 12, 14, 17, 17, 18, 21, 22, 24, 27, 29, 30, 32, 34, 36, 39, 42, 43, 49, 50, 50, 53, 54, 57, 60, 61, 63, 66, 68, 69, 74, 75, 78, 83, 85, 86, 88, 90, 93, 96, 99, 100, 105, 108, 111, 114, 116, 117, 125, 126, 128, 133, 133
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and have a binary carry if the positions of 1's in their reversed binary expansion overlap.

Examples

			The a(3) = 1 through a(12) = 11 pairs:
  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}   {1,3}   {1,3}
                {1,5}  {1,5}  {1,5}  {1,5}  {1,5}  {1,5}   {1,5}   {1,5}
                       {2,6}  {1,7}  {1,7}  {1,7}  {1,7}   {1,7}   {1,7}
                       {3,6}  {2,6}  {2,6}  {1,9}  {1,9}   {1,9}   {1,9}
                              {3,6}  {3,6}  {2,6}  {2,6}   {2,6}   {2,6}
                                            {3,6}  {3,6}   {3,6}   {3,6}
                                            {3,9}  {3,9}   {3,9}   {3,9}
                                                   {2,10}  {1,11}  {1,11}
                                                           {2,10}  {2,10}
                                                                   {4,12}
                                                                   {6,12}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{2}],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}]

Formula

a(n) = A325124(n) - n.