This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307246 #11 Apr 01 2019 08:34:39 %S A307246 2,7,67,1277,2484733 %N A307246 Smallest k for which a set of n primes <= k exists so that the averages of all nonempty subsets are all distinct primes. %H A307246 Andrew Granville, <a href="http://www.dms.umontreal.ca/~andrew/PDF/PrimePatterns.pdf">Prime number patterns</a> %e A307246 For any set of n elements, there are 2^n - 1 nonempty subsets. %e A307246 For n=3, consider the set {7, 19, 67}. %e A307246 The averages of the 2^3 - 1 = 7 nonempty subsets are: %e A307246 avg({7}) = 7 %e A307246 avg({19}) = 19 %e A307246 avg({67}) = 67 %e A307246 avg({7, 19}) = 13 %e A307246 avg({7, 67}) = 37 %e A307246 avg({19, 67}) = 43 %e A307246 avg({7, 19, 67}) = 31 %e A307246 All these averages are different primes, and no such set exists with the largest element < 67. Hence, a(3) = 67. %e A307246 Sets which minimize the largest elements are: %e A307246 n = 1 {2} %e A307246 n = 2 {3, 7} %e A307246 n = 3 {7, 19, 67} %e A307246 n = 4 {5, 17, 89, 1277} %e A307246 n = 5 {209173, 322573, 536773, 1217893, 2484733} %Y A307246 For n > 1, largest element of row n of A113833. %K A307246 nonn,hard,more %O A307246 1,1 %A A307246 _Bert Dobbelaere_, Mar 30 2019