cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307247 Second digit in the expansion of n in Fraenkel's exotic ternary representation.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Michel Dekking, Apr 01 2019

Keywords

Comments

Let {p_i, i >= 0} = {1,3,7,17,41,99,...} denote the numerators of successive convergents to sqrt(2) (see A001333). Then any n >= 0 has a unique representation as n = Sum_{i >= 0} d_i*p_i, with 0 <= d_i <= 2, d_{i+1}=2 => d_i=0. Sequence gives a(n+1) = d_1.
Let x be the 3-symbol Pell word A294180 = 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, ... Let delta be the morphism
1 -> 000, 2 -> 111, 3 -> 2.
Then delta(x) = (a(n)). This can be proved by induction, starting from the knowledge that the sequence of first digits d_0 = d_0(n) of n in the exotic ternary expansion shifted by 1 is equal to x (see A263844).
More generally, the sequence of k-th digits d_k shifted by 1 is equal to delta_k(x), where the morphism delta_k is given by
1 -> U_k, 2 -> V_k, 3 -> W_k.
Here U_k is a concatenation of p_{k+1} letters 0, V_k is a concatenation of p_{k+1} letters 1, and W_k is a concatenation of p_k letters 2.

Crossrefs