This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307250 #25 Aug 11 2025 08:13:09 %S A307250 193,233,257,277,349,389,397,461,509 %N A307250 Primes q == 1 (mod 4) such that there is exactly one equivalence class of quaternary quadratic forms of discriminant q not representing 2. %C A307250 This list is exhaustive for q < 350000. - _Andy Huchala_, May 17 2023 %H A307250 F. Hirzebruch, <a href="http://www.numdam.org/item/10.24033/asens.1342.pdf">Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe</a>, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135. %H A307250 Jürg Kramer, <a href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0281">On the linear independence of certain theta-series</a>, Mathematische Annalen 281.2 (1988): 219-228. See page 226. %o A307250 (Sage) %o A307250 bound = 100 %o A307250 P = Primes() %o A307250 p = 3 %o A307250 for i in range(bound): %o A307250 p = P.next(p) %o A307250 if p % 4 == 1: %o A307250 K1.<a> = NumberField(x^2 - p) %o A307250 K2.<b> = NumberField(x^2 + p) %o A307250 K3.<c> = NumberField(x^2 + 3*p) %o A307250 zeta = K1.zeta_function() %o A307250 h2 = len(K2.class_group()) %o A307250 h3 = len(K3.class_group()) %o A307250 H_plus = 1/2 * zeta(-1) + 1/8 * h2 + 1/6 * h3 %o A307250 H = (H_plus + int((p + 19)/24))/2 %o A307250 if abs(H_plus-H-1)<.01: %o A307250 print(p) # _Andy Huchala_, May 17 2023 %K A307250 nonn,more %O A307250 1,1 %A A307250 _N. J. A. Sloane_, Mar 31 2019 %E A307250 Name clarified by _Andy Huchala_, May 18 2023