cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307260 Expansion of (1/(1 + x)) * Product_{k>=1} (1 + k*x^k/(1 + x)^k).

This page as a plain text file.
%I A307260 #8 Apr 03 2019 09:04:08
%S A307260 1,0,1,1,-4,14,-35,77,-161,356,-873,2267,-5787,13850,-30361,59934,
%T A307260 -103754,147968,-139049,-58998,730972,-2430881,6333238,-15548722,
%U A307260 39845197,-110775861,325257904,-960503811,2756222486,-7568564555,19815541729,-49548068461,118752506024
%N A307260 Expansion of (1/(1 + x)) * Product_{k>=1} (1 + k*x^k/(1 + x)^k).
%C A307260 Inverse binomial transform of A022629.
%F A307260 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A022629(k).
%p A307260 a:=series((1/(1+x))*mul(1+k*x^k/(1+x)^k,k=1..100),x=0,33): seq(coeff(a,x,n),n=0..32); # _Paolo P. Lava_, Apr 03 2019
%t A307260 nmax = 32; CoefficientList[Series[1/(1 + x) Product[(1 + k x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A307260 Cf. A022629, A293467, A294503, A307258, A307259.
%K A307260 sign
%O A307260 0,5
%A A307260 _Ilya Gutkovskiy_, Apr 01 2019