cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307261 Expansion of Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).

This page as a plain text file.
%I A307261 #8 Apr 03 2019 09:04:14
%S A307261 1,1,4,13,42,130,397,1197,3566,10517,30760,89293,257397,737220,
%T A307261 2099215,5945594,16756258,47004829,131286914,365203797,1012031772,
%U A307261 2794446326,7690009600,21094325177,57687762889,157306741287,427777384499,1160250104637,3139067594584,8472525405830,22815639395641
%N A307261 Expansion of Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).
%C A307261 First differences of the binomial transform of A006906.
%p A307261 a:=series(mul(1/(1-k*x^k/(1-x)^k),k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # _Paolo P. Lava_, Apr 03 2019
%t A307261 nmax = 30; CoefficientList[Series[Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A307261 Cf. A006906, A218482, A307262, A318127, A320563.
%K A307261 nonn
%O A307261 0,3
%A A307261 _Ilya Gutkovskiy_, Apr 01 2019