This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307265 #10 Apr 03 2019 03:00:39 %S A307265 1,1,1,2,5,12,27,58,122,257,549,1190,2600,5683,12367,26749,57530, %T A307265 123202,263115,561131,1196248,2550975,5443115,11620526,24814735, %U A307265 52979512,113038103,240936717,512916683,1090501249,2315608462,4911611864,10408318627,22040127864 %N A307265 Expansion of Product_{k>=1} 1/(1 + (-x)^k/(1 - x)^k). %C A307265 First differences of the binomial transform of A000700. %F A307265 G.f.: Product_{k>=1} (1 + x^(2*k-1)/(1 - x)^(2*k-1)). %F A307265 a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/3)/2 + Pi^2/96) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 01 2019 %p A307265 a:=series(mul(1/(1+(-x)^k/(1-x)^k),k=1..50),x=0,34): seq(coeff(a,x,n),n=0..33); # _Paolo P. Lava_, Apr 02 2019 %t A307265 nmax = 33; CoefficientList[Series[Product[1/(1 + (-x)^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A307265 Cf. A000700, A129519, A218482, A307264. %K A307265 nonn %O A307265 0,4 %A A307265 _Ilya Gutkovskiy_, Apr 01 2019