cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307303 Triangle T(n, k) read as upwards antidiagonals of array A, where A(n, k) is the number of families (also called classes) of proper solutions of the Pell equation x^2 - D(n)*y^2 = -k, for k >= 1.

This page as a plain text file.
%I A307303 #16 May 07 2019 15:29:48
%S A307303 1,0,1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,2,0,0,1,0,2,0,1,0,2,0,0,0,0,2,0,
%T A307303 0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,
%U A307303 2,0,0,2,2,0,0,0,2,0
%N A307303 Triangle T(n, k) read as upwards antidiagonals of array A, where A(n, k) is the number of families (also called classes) of proper solutions of the Pell equation x^2 - D(n)*y^2 = -k, for k >= 1.
%C A307303 For details see A324252 which gives the array for the numbers of families of proper solutions of x^2 - D(n)*y^2 = k for positive integers k. See also the W. Lang link in A324251, section 3.
%C A307303 The D(n) values for nonzero entries in column k = 1 are given in A003814 (representation of -1).
%C A307303 The position list for nonzero entries in row n = 1 is A057126 (conjecture).
%D A307303 D. A. Buell, Binary Quadratic Forms, Springer, 1989.
%D A307303 A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973.
%F A307303 T(n, k) =  A(n-k+1, k) for 1 <= k <= n, with A(n,k) the number of proper (positive) fundamental solutions of the Pell equation x^2 - D(n)*y^2 = -k for k >= 1, with D(n) = A000037(n), for n >= 1. Each such fundamental solution generates a family of proper solutions.
%e A307303 The array A(n, k) begins:
%e A307303 n,  D(n) \k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
%e A307303 -------------------------------------------------------------------
%e A307303 1,   2:      1  1  0  0  0  0  2  0  0  0  0  0  0  2  0
%e A307303 2,   3:      0  1  1  0  0  0  0  0  0  0  2  0  0  0  0
%e A307303 3,   5:      1  0  0  2  1  0  0  0  0  0  2  0  0  0  0
%e A307303 4,   6:      0  1  0  0  2  1  0  0  0  0  0  0  0  0  2
%e A307303 5,   7:      0  0  2  0  0  2  1  0  0  0  0  0  0  1  0
%e A307303 6,   8:      0  0  0  1  0  0  2  1  0  0  0  0  0  0  0
%e A307303 7,  10:      1  0  0  0  0  2  0  0  2  1  0  0  0  0  2
%e A307303 8,  11:      0  1  0  0  0  0  2  0  0  2  1  0  0  0  0
%e A307303 9,  12:      0  0  1  0  0  0  0  2  0  0  2  1  0  0  0
%e A307303 10, 13:      1  0  2  2  0  0  0  0  2  0  0  4  1  0  0
%e A307303 11, 14:      0  0  0  0  2  0  1  0  0  2  0  0  2  1  0
%e A307303 12, 15:      0  0  0  0  0  1  0  0  0  0  2  0  0  2  1
%e A307303 13, 17:      1  0  0  0  0  0  0  2  0  0  0  0  2  0  0
%e A307303 14, 18:      0  1  0  0  0  0  0  0  2  0  0  0  0  2  0
%e A307303 15, 19:      0  1  2  0  0  0  0  0  0  2  0  0  0  0  4
%e A307303 16, 20:      0  0  0  1  0  0  0  0  0  0  2  0  0  0  0
%e A307303 17, 21:      0  0  1  0  2  0  0  0  0  0  0  2  0  0  0
%e A307303 18, 22:      0  1  0  0  0  0  2  0  0  0  0  0  2  0  0
%e A307303 19, 23:      0  0  0  0  0  0  0  0  0  0  2  0  0  2  0
%e A307303 20, 24:      0  0  0  0  0  0  0  1  0  0  0  0  0  0  2
%e A307303 -------------------------------------------------------------------
%e A307303 The triangle T(n, k) begins:
%e A307303 n\k   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 ..
%e A307303 1:    1
%e A307303 2:    0  1
%e A307303 3:    1  1  0
%e A307303 4:    0  0  1  0
%e A307303 5:    0  1  0  0  0
%e A307303 6:    0  0  0  2  0  0
%e A307303 7:    1  0  2  0  1  0  2
%e A307303 8:    0  0  0  0  2  0  0  0
%e A307303 9:    0  1  0  1  0  1  0  0  0
%e A307303 10:   1  0  0  0  0  2  0  0  0  0
%e A307303 11:   0  0  1  0  0  0  1  0  0  0  0
%e A307303 12:   0  0  2  0  0  2  2  0  0  0  2  0
%e A307303 13:   1  0  0  2  0  0  0  1  0  0  2  0  0
%e A307303 14:   0  0  0  0  0  0  2  0  0  0  0  0  0  2
%e A307303 15:   0  1  0  0  2  0  0  0  2  0  0  0  0  0  0
%e A307303 16:   0  1  0  0  0  0  0  2  0  1  0  0  0  0  0  0
%e A307303 17:   0  0  2  0  0  1  1  0  0  2  0  0  0  0  0  0  2
%e A307303 18:   0  0  0  0  0  0  0  0  2  0  1  0  0  1  2  0  0  0
%e A307303 19:   0  1  1  1  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0
%e A307303 20:   0  0  0  0  0  0  0  2  0  2  0  1  0  0  0  0  0  0  0  0
%e A307303 ...
%e A307303 For this triangle more than the shown columns of the array have been used.
%e A307303 ----------------------------------------------------------------------------
%e A307303 A(5, 6) = 2 = T(10, 6)  because D(5) =  7, and the Pell form F(5) with disc(F(5)) = 4*7 = 28 representing k = -6 has 2 families (classes) of proper solutions generated from the two positive fundamental positive solutions (x10, y10) = (13, 5) and  (x20, y20) = (1, 1). They are obtained from the trivial solutions of the parallel forms [-6, 2, 1] and [-6, 10, -3], respectively.
%Y A307303 Cf. A000037, A000194, A003814, A057126, A324252 (positive k), A324251.
%K A307303 nonn,tabl
%O A307303 1,19
%A A307303 _Wolfdieter Lang_, Apr 20 2019