cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307307 a(n) is the forgotten index of the Lucas cube Lambda(n).

This page as a plain text file.
%I A307307 #12 Apr 02 2019 05:36:47
%S A307307 0,10,30,112,300,840,2044,4864,10944,23960,50908,105840,215748,432656,
%T A307307 855240,1669568,3223404,6162552,11678540,21957440,40988976,76019944,
%U A307307 140155100,256995936,468887700,851538064,1539858168,2773522192,4977094956,8900629800
%N A307307 a(n) is the forgotten index of the Lucas cube Lambda(n).
%C A307307 The Lucas cube Lambda(n) can be defined as the graph whose vertices are the binary strings of length n without either two consecutive 1's or a 1 in the first and in the last position, and in which two vertices are adjacent when their Hamming distance is exactly 1.
%C A307307 The forgotten topological index of a simple connected graph is the sum of the cubes of its vertex degrees.
%C A307307 In the Maple program T(n,k) gives the number of vertices of degree k in the Lucas cube Lambda(n).
%H A307307 B. Furtula and I. Gutman, <a href="https://doi.org/10.1007/s10910-015-0480-z">A forgotten topological index</a>, J. Math. Chem. 53 (4), 1184-1190, 2015.
%H A307307 S. Klavžar, M. Mollard and M. Petkovšek, <a href="https://doi.org/10.1016/j.disc.2011.03.019">The degree sequence of Fibonacci and Lucas cubes</a>, Discrete Mathematics, Vol. 311, No. 14 (2011), 1310-1322.
%F A307307 Conjectures from _Colin Barker_, Apr 02 2019: (Start)
%F A307307 G.f.: 2*x^2*(5 - 5*x + 6*x^2 - 4*x^3 + 27*x^4 - 25*x^5 - 6*x^6 + 9*x^8 + 3*x^9) / (1 - x - x^2)^4.
%F A307307 a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n>11.
%F A307307 (End)
%e A307307 a(2) = 10 because the Lucas cube Lambda(2) is the path tree P_3 having 2 vertices of degree 1 and 1 vertex of degree 2; consequently, the forgotten index is 1^3 + 1^3 + 2^3 = 10.
%p A307307 G:=(1+(1-t)*z + t^2*z^2 + (1-t)*t*z^3 - t*(1-t)^2*z^4)/((1-t*z)*(1-t*z^2)-t*z^3): M:=expand(series(G,z=0,40)): T:=(n,k)->coeff(coeff(M,z,n),t,k): FI:=n->add(T(n,k)*k^3, k=0..n): seq(FI(n), n=1..30);
%Y A307307 Cf. A307181, A307208, A307212.
%K A307307 nonn
%O A307307 1,2
%A A307307 _Emeric Deutsch_, Apr 02 2019