cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307310 Expansion of Product_{k>=1} (1 - x^k/(1 - x)^k).

This page as a plain text file.
%I A307310 #9 Apr 03 2019 03:00:30
%S A307310 1,-1,-2,-3,-4,-4,-1,9,34,89,200,409,779,1394,2339,3624,4974,5323,
%T A307310 1682,-13279,-56222,-163136,-408768,-943275,-2059237,-4310179,
%U A307310 -8712425,-17072901,-32486302,-60006278,-107341413,-184979170,-303998680,-467127625,-642495990,-696247140
%N A307310 Expansion of Product_{k>=1} (1 - x^k/(1 - x)^k).
%C A307310 First differences of the binomial transform of A010815.
%C A307310 Convolution inverse of A218482.
%p A307310 a:=series(mul((1-x^k/(1-x)^k),k=1..100),x=0,35): seq(coeff(a,x,n),n=0..34); # _Paolo P. Lava_, Apr 02 2019
%t A307310 nmax = 35; CoefficientList[Series[Product[(1 - x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A307310 Cf. A010815, A103446, A129519, A218482, A307311.
%K A307310 sign
%O A307310 0,3
%A A307310 _Ilya Gutkovskiy_, Apr 02 2019