This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307325 #22 Dec 06 2022 02:52:00 %S A307325 2,4,4,9,9,24,24,30,30,30,30,30,30,99,99,99,99,154,154,189,189,217, %T A307325 217,217,217,217,217,217,217,217,217,217,217,1183,1183,1831,1831,1831, %U A307325 1831,1831,1831,1831,1831,2225,2225,2225,2225,2225,2225,2225,2225,3385,3385,3385,3385 %N A307325 a(n) is the smallest number k for which prime(k+1) - prime(k) is greater than n. %C A307325 For any n there is an infinity of numbers m for which prime(m+1) - prime(m) is greater than n. %C A307325 It appears that the sequence of lengths of successive runs is equal to A053695. - _Marc Bofill Janer_, May 21 2019 %D A307325 Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed.Gil, Zalău, (2003), ch. 1, p.7, pr. 25. (in Romanian). %F A307325 a(2*n) = a(2*n+1) = A144309(n+1) for n>=1. - _Georg Fischer_, Dec 05 2022 %e A307325 For n = 2, prime(2) - prime(1) = 3 - 2 = 1, prime(3) - prime(2) = 5 - 3 = 2, prime(5) - prime(4) = 11 - 7 = 4, so a(2) = 4. %o A307325 (MATLAB) v=primes(1000000); %o A307325 for u=1:100; ss=1; %o A307325 while and(v(ss+1)-v(ss)<=u,ss<length(v)-1); ss=ss+1;end; %o A307325 sol(u)=ss; %o A307325 end %o A307325 sol %o A307325 (Magma) v:=PrimesUpTo(10000000); %o A307325 sol:=[]; %o A307325 for u in [1..60] do %o A307325 for ss in [1..#v-1] do %o A307325 if v[ss+1]-v[ss] gt u then %o A307325 sol[u]:=ss; %o A307325 break; %o A307325 end if; %o A307325 end for; %o A307325 end for; %o A307325 sol; %o A307325 (PARI) a(n) = my(k=1); while(prime(k+1) - prime(k) <= n, k++); k; \\ _Michel Marcus_, Apr 03 2019 %Y A307325 Cf. A000040, A001223, A005250, A005669. %Y A307325 Cf. A053695, A144309. %K A307325 nonn %O A307325 1,1 %A A307325 _Marius A. Burtea_, Apr 02 2019