This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307327 #8 Apr 19 2019 13:49:11 %S A307327 1,2,3,5,6,6,5,9,8,9,8,11,12,11,11,10,12,12,11,14,15,15,16,12,14,14, %T A307327 15,12,12,12,12,14,13,14,12,12,14,15,16,15,15,16,18,15,17,18,18,21,22, %U A307327 17,15,19,17,15,16,17,16,16,17,18,18,17,17,16,17,15,15,14 %N A307327 Number of superabundant m in the interval p_k# <= m < p_(k+1)#, where p_i# = A002110(i). %C A307327 Also first differences of the number of terms m in A004394 such that m < A002110(k). %C A307327 Analogous to A307113. %C A307327 Terms m in A004394 (superabundant numbers) are products of primorials. %C A307327 The primorial A002110(k) is the smallest number that is the product of the k smallest primes. %C A307327 This sequence partitions A004394 using terms in A002110. %C A307327 First terms {1, 2, 3, 5, 6} are the same as those of A307113, since the first 19 terms of A002182 and A004394 are identical. %H A307327 Michael De Vlieger, <a href="/A307327/b307327.txt">Table of n, a(n) for n = 0..407</a> %H A307327 Michael De Vlieger, <a href="/A307327/a307327.png">Graph comparing a(n) in red with A307113(n) in blue</a> %e A307327 First terms of this sequence and the superabundant numbers within the intervals: %e A307327 n a(n) m such that A002110(n) <= m < A002110(n+1) %e A307327 ------------------------------------------------------- %e A307327 0 1 1* %e A307327 1 2 2* 4 %e A307327 2 3 6* 12 24 %e A307327 3 5 36 48 60 120 180 %e A307327 4 6 240 360 720 840 1260 1680 %e A307327 5 6 2520 5040 10080 15120 25200 27720 %e A307327 6 5 55440 110880 166320 277200 332640 %e A307327 ... %e A307327 (Asterisks denote primorials in A004394.) %t A307327 Block[{nn = 8, P, s}, P = Nest[Append[#, #[[-1]] Prime@ Length@ #] &, {1}, nn + 1]; s = Array[DivisorSigma[1, # ]/# &, P[[nn + 1]]]; s = Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]; Table[Count[s, _?(If[! IntegerQ@ #, 1, #] &@ P[[i]] <= # < P[[i + 1]] &)], {i, nn}]] %Y A307327 Cf. A002110, A002182, A004394, A307113. %K A307327 nonn %O A307327 0,2 %A A307327 _Michael De Vlieger_, Apr 02 2019