This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307347 #9 Apr 10 2019 02:51:56 %S A307347 1,8,168,5120,190120,7939008,357713664,17010543264,842994009000, %T A307347 43192225007360,2275378947981568,122724475613935104, %U A307347 6753785574641857024,378138077830110886400,21486835143540141873120,1236506847203439155401920,71934214120446285067176360 %N A307347 Number of 2n-move closed antelope paths on an unbounded chessboard from a given square to the same square. %C A307347 Antelope is a leaper [3,4]. %H A307347 Vaclav Kotesovec, <a href="/A307347/b307347.txt">Table of n, a(n) for n = 0..552</a> %F A307347 a(n) = the constant term in the expansion of (x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^(2*n). %F A307347 Conjecture: a(n) ~ 64^n / (25*Pi*n). %p A307347 b:= proc(n, x, y) option remember; `if`(max(x, y)>4*n or x+y>7*n, 0, %p A307347 `if`(n=0, 1, add(b(n-1, abs(x+l[1]), abs(y+l[2])), l=[[4, 3], %p A307347 [3, 4], [-4, 3], [-3, 4], [4, -3], [3, -4], [-4, -3], [-3, -4]]))) %p A307347 end: %p A307347 a:= n-> b(2*n, 0$2): %p A307347 seq(a(n), n=0..25); %p A307347 # second Maple program: %p A307347 poly := expand((x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^2): z:=1: for n to 100 do z:=expand(z*poly): print(n, coeff(coeff(z, x, 0), y, 0)); end do: %t A307347 poly = Expand[(x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^2]; z = 1; Flatten[{1, Table[z = Expand[z*poly]; z[[1]], {n, 1, 15}]}] %Y A307347 Cf. A094061, A253974, A254129, A254459. %K A307347 nonn %O A307347 0,2 %A A307347 _Vaclav Kotesovec_, Apr 03 2019