cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307363 Expansion of e.g.f. Sum_{j>=0} log(1 + x)^j / Product_{k=1..j} (1 - k*log(1 + x)).

This page as a plain text file.
%I A307363 #5 Apr 05 2019 17:46:44
%S A307363 1,1,3,20,218,3514,77386,2220504,80085792,3533917704,186779329704,
%T A307363 11623513158960,839754709300800,69603737430736560,6552428441847854640,
%U A307363 694531396130434062720,82265733994694038784640,10816812417663289139328000,1569560370536552329095091200
%N A307363 Expansion of e.g.f. Sum_{j>=0} log(1 + x)^j / Product_{k=1..j} (1 - k*log(1 + x)).
%F A307363 a(n) = Sum_{k=0..n} Stirling1(n,k)*k!*Bell(k).
%t A307363 nmax = 18; CoefficientList[Series[Sum[Log[1 + x]^j/Product[(1 - k Log[1 + x]), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t A307363 Table[Sum[StirlingS1[n, k] k! BellB[k], {k, 0, n}], {n, 0, 18}]
%Y A307363 Cf. A000110, A006252, A137341, A307362.
%K A307363 nonn
%O A307363 0,3
%A A307363 _Ilya Gutkovskiy_, Apr 05 2019