cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307364 Expansion of 1/(1 - Sum_{k>=1} prime(k)#*x^k), where prime(k)# is the product of first k primes (A002110).

This page as a plain text file.
%I A307364 #5 Apr 05 2019 17:46:39
%S A307364 1,2,10,62,454,4310,49954,746078,13180750,283749638,7747573666,
%T A307364 234558524690,8437098259486,340293472077722,14523592739559970,
%U A307364 676119676949381762,35425760935764788014,2070535245695282709950,125884029549845876309674,8379955313909510350628018
%N A307364 Expansion of 1/(1 - Sum_{k>=1} prime(k)#*x^k), where prime(k)# is the product of first k primes (A002110).
%C A307364 Invert transform of A002110.
%F A307364 a(0) = 1; a(n) = Sum_{k=1..n} A002110(k)*a(n-k).
%t A307364 nmax = 19; CoefficientList[Series[1/(1 - Sum[Product[Prime[j], {j, k}] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%t A307364 a[0] = 1; a[n_] := a[n] = Sum[Product[Prime[j], {j, k}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
%Y A307364 Cf. A002110, A030017, A051296.
%K A307364 nonn
%O A307364 0,2
%A A307364 _Ilya Gutkovskiy_, Apr 05 2019