A307371 Numbers k such that the digits of sqrt(k) begin with k.
0, 1, 98, 99, 100, 9998, 9999, 10000, 999998, 999999, 1000000, 99999998, 99999999, 100000000, 9999999998, 9999999999, 10000000000, 999999999998, 999999999999, 1000000000000, 99999999999998, 99999999999999, 100000000000000, 9999999999999998, 9999999999999999
Offset: 1
Examples
sqrt(9998) = 99.989..., which begins with "9998", so 9998 is in the sequence.
Links
- Dmitry Kamenetsky, Java program to compute terms
Programs
-
Python
A307371_list = [0, 1, 98, 99, 100, 9998] for _ in range(100): A307371_list.append(101*A307371_list[-3]-100*A307371_list[-6]) # Chai Wah Wu, Jan 18 2020
Formula
From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 101*a(n-3) - 100*a(n-6) for n > 6.
G.f.: x^2*(100*x^4 - x^3 + 99*x^2 + 98*x + 1)/(100*x^6 - 101*x^3 + 1). (End)
Extensions
a(12)-a(25) from Jon E. Schoenfield, May 01 2019
Comments