cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307373 Heinz numbers of integer partitions with at least three parts, the third of which is 2.

This page as a plain text file.
%I A307373 #6 Apr 06 2019 09:59:35
%S A307373 27,45,54,63,75,81,90,99,105,108,117,126,135,147,150,153,162,165,171,
%T A307373 180,189,195,198,207,210,216,225,231,234,243,252,255,261,270,273,279,
%U A307373 285,294,297,300,306,315,324,330,333,342,345,351,357,360,363,369,378,387
%N A307373 Heinz numbers of integer partitions with at least three parts, the third of which is 2.
%C A307373 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A307373 The enumeration of these partitions by sum is given by A006918 (see Emeric Deutsch's comment there).
%e A307373 The sequence of terms together with their prime indices begins:
%e A307373    27: {2,2,2}
%e A307373    45: {2,2,3}
%e A307373    54: {1,2,2,2}
%e A307373    63: {2,2,4}
%e A307373    75: {2,3,3}
%e A307373    81: {2,2,2,2}
%e A307373    90: {1,2,2,3}
%e A307373    99: {2,2,5}
%e A307373   105: {2,3,4}
%e A307373   108: {1,1,2,2,2}
%e A307373   117: {2,2,6}
%e A307373   126: {1,2,2,4}
%e A307373   135: {2,2,2,3}
%e A307373   147: {2,4,4}
%e A307373   150: {1,2,3,3}
%e A307373   153: {2,2,7}
%e A307373   162: {1,2,2,2,2}
%e A307373   165: {2,3,5}
%e A307373   171: {2,2,8}
%e A307373   180: {1,1,2,2,3}
%t A307373 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A307373 Select[Range[100],PrimeOmega[#]>=3&&Reverse[primeMS[#]][[3]]==2&]
%Y A307373 Cf. A000726, A002620, A004250, A006918, A056239, A097701, A112798, A257990, A297113, A325164, A325169, A325170.
%K A307373 nonn
%O A307373 1,1
%A A307373 _Gus Wiseman_, Apr 05 2019