This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307373 #6 Apr 06 2019 09:59:35 %S A307373 27,45,54,63,75,81,90,99,105,108,117,126,135,147,150,153,162,165,171, %T A307373 180,189,195,198,207,210,216,225,231,234,243,252,255,261,270,273,279, %U A307373 285,294,297,300,306,315,324,330,333,342,345,351,357,360,363,369,378,387 %N A307373 Heinz numbers of integer partitions with at least three parts, the third of which is 2. %C A307373 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A307373 The enumeration of these partitions by sum is given by A006918 (see Emeric Deutsch's comment there). %e A307373 The sequence of terms together with their prime indices begins: %e A307373 27: {2,2,2} %e A307373 45: {2,2,3} %e A307373 54: {1,2,2,2} %e A307373 63: {2,2,4} %e A307373 75: {2,3,3} %e A307373 81: {2,2,2,2} %e A307373 90: {1,2,2,3} %e A307373 99: {2,2,5} %e A307373 105: {2,3,4} %e A307373 108: {1,1,2,2,2} %e A307373 117: {2,2,6} %e A307373 126: {1,2,2,4} %e A307373 135: {2,2,2,3} %e A307373 147: {2,4,4} %e A307373 150: {1,2,3,3} %e A307373 153: {2,2,7} %e A307373 162: {1,2,2,2,2} %e A307373 165: {2,3,5} %e A307373 171: {2,2,8} %e A307373 180: {1,1,2,2,3} %t A307373 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A307373 Select[Range[100],PrimeOmega[#]>=3&&Reverse[primeMS[#]][[3]]==2&] %Y A307373 Cf. A000726, A002620, A004250, A006918, A056239, A097701, A112798, A257990, A297113, A325164, A325169, A325170. %K A307373 nonn %O A307373 1,1 %A A307373 _Gus Wiseman_, Apr 05 2019