A307377 Array A(n, k) read by upwards antidiagonals giving the number of representative parallel primitive binary quadratic forms for discriminant Disc(n) = 4*D(n), with D(n) = A000037(n), and for representable integer |k| >= 1.
1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 0, 0, 0, 2, 0
Offset: 1
Examples
The array A(n, k) begins: n, D(n) \k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ------------------------------------------------------------- 1, 2: 1 1 0 0 0 0 2 0 0 0 0 0 0 2 0 2, 3: 1 1 1 0 0 1 0 0 0 0 2 0 2 0 0 3, 5: 1 0 0 2 1 0 0 0 0 0 2 0 0 0 0 4, 6: 1 1 1 0 2 1 0 0 0 2 0 0 0 0 2 5, 7: 1 1 2 0 0 2 1 0 2 0 0 0 0 1 0 6, 8: 1 0 0 1 0 0 2 2 0 0 0 0 0 0 0 7, 10: 1 1 2 0 1 2 0 0 2 1 0 0 2 0 2 8, 11: 1 1 0 0 2 0 2 0 0 2 1 0 0 2 0 9, 12: 1 0 1 1 0 0 0 2 0 0 2 1 2 0 0 10, 13: 1 0 2 2 0 0 0 0 2 0 0 4 1 0 0 11, 14: 1 1 0 0 2 0 1 0 0 2 2 0 2 1 0 12, 15: 1 1 1 0 1 1 2 0 0 1 2 0 0 2 1 13, 17: 1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 14, 18: 1 1 0 0 0 0 2 0 3 0 0 0 0 2 0 15, 19: 1 1 2 0 2 2 0 0 2 2 0 0 0 0 4 16, 20: 1 0 0 1 1 0 0 0 0 0 2 0 0 0 0 17, 21: 1 0 1 2 2 0 1 0 0 0 0 2 0 0 2 18, 22: 1 1 2 0 0 2 2 0 2 0 1 0 2 2 0 19, 23: 1 1 0 0 0 0 2 0 0 0 2 0 2 2 0 20, 24: 1 0 1 1 2 0 0 2 0 0 0 1 0 0 2 ... ------------------------------------------------------------- The antidiagonals: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... 1: 1 2: 1 1 3: 1 1 0 4: 1 0 1 0 5: 1 1 0 0 0 6: 1 1 1 2 0 0 7: 1 0 2 0 1 1 2 8: 1 1 0 0 2 0 0 0 9: 1 1 2 1 0 1 0 0 0 10: 1 0 0 0 0 2 0 0 0 0 11: 1 0 1 0 1 0 1 0 0 0 0 12: 1 1 2 1 2 2 2 0 0 0 2 0 13: 1 1 0 2 0 0 0 2 2 2 2 0 0 14: 1 0 1 0 0 0 2 0 0 0 0 0 2 2 15: 1 1 0 0 2 0 0 0 2 0 0 0 0 0 0 16: 1 1 0 0 1 0 0 2 0 1 0 0 0 0 0 0 17: 1 0 2 0 0 1 1 0 0 2 0 0 0 0 0 0 2 18: 1 0 0 0 0 0 2 0 2 0 1 0 0 1 2 0 0 0 19: 1 1 1 1 2 0 0 0 0 0 2 0 2 0 0 0 0 0 0 20: 1 1 2 2 1 2 2 2 0 2 0 1 0 0 0 0 0 0 0 0 ... For this triangle more of the columns of the array have been used than those that are shown. ----------------------------------------------------------------------------- A(2, 3) = 1 because the representative parallel primitive form (rpapf) for discriminant 4*D(2) = 12 and k = +3 is [3, 0, -1], and the one for k= -3 is [-3, 0, 1] (sign flip in both, the a and c entries, but leaving the b entry). A(3, 4) = 2 because the two rpapfs for discriminant 4*D(3) = 20 and k = +4 are [4, 2, -1] and [4, 6, 1], and the two ones for k = -4 are [-4, 2, 1], [-4, 6, -1].
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989, chapter 3, pp. 21 - 43.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, pp. 112 - 126.
Comments