A307378 Irregular triangle T(n, k) read by rows: row n gives the periods of the cycles of binary quadratic forms of discriminant 4*D(n), with D(n) = A000037(n).
2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 6, 2, 2, 2, 2, 10, 4, 4, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 6, 6, 6, 6, 4, 4, 2, 2, 4, 4, 2, 6, 2, 2, 4, 4, 10, 2, 2, 4, 4, 8, 8, 4, 4, 4, 4, 4, 4, 6, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 6, 6, 2, 2, 4, 4, 6, 2, 2, 2, 2, 10, 10, 8, 8, 6, 6, 12, 12, 4, 4, 2, 2, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6
Offset: 1
Examples
The irregular triangle T(n, k) begins: n, D(n) \k 1 2 3 4 ... 2*A307236 --------------------------------------------------- 1, 2: 2 2 2, 3: 2 2 4 3, 5: 2 2 4, 6: 2 2 4 5, 7: 4 4 8 6, 8: 2 2 4 7, 10: 2 6 8 8, 11: 2 2 4 9, 12: 2 2 4 10, 13: 10 10 11, 14: 4 4 8 12, 15: 2 2 2 2 8 13, 17: 2 2 14, 18: 2 2 4 15, 19: 6 6 12 16, 20: 2 2 4 17, 21: 6 6 12 18, 22: 6 6 12 19, 23: 4 4 8 20, 24: 2 2 4 4 12 ... --------------------------------------------------- n = 1, D(1) = 2: the only cycle is the principal 2-cycle [[1, 2, -1],[-1, 2, 1]] with discriminant 8. n = 2, D(2) = 3: besides the principal 2-cycle [[1, 2, -2], [-2, 2, 1]] there is another 2-cycle with sign flips in the outer form entries [[2, 2, -1], [-1, 2, 2]], all with discriminant 12. n = 7, D(7) = 10: the principal 2-cycle CR(7) is ([1, 6, -1], [-1, 6, 1]). The other 6-cyle is ([3, 4, -2], [-2, 4, 3], [3, 2, -3], [-3, 4, 2], [2, 4, -3], [-3, 2, 3]). Both cycles are invariant under outer entries sign flips.
References
- D. A. Buell, Binary Quadratic Forms, Springer, 1989.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973.
Formula
T(n, k) = length of k-th cycle of reduced forms of discriminant 4*D(n), with D(n) = A000037(n).
Comments