cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307379 Decimal expansion of Sum_{n >= 1} 2/(k(n)*(k(n) + 1)), with k = A018252 (nonprime numbers).

Original entry on oeis.org

1, 3, 3, 9, 5, 4, 0, 1, 4, 7, 4, 7, 1, 5, 9, 3, 5, 1, 7, 9, 6, 9, 8, 1, 0, 8, 2, 3, 8, 2, 6, 5, 1, 0, 4, 7, 8, 7, 1, 1, 4, 8, 1, 1, 6, 1, 0, 5, 1, 8, 5, 9, 0, 8, 7, 6, 9, 9, 5, 4, 2, 7, 9, 8, 4, 7, 5, 1, 5, 5, 6, 6, 6, 4, 1, 4, 1, 8, 4, 1, 1, 1, 3, 5, 6, 5, 9
Offset: 1

Views

Author

Marco Ripà, Apr 06 2019

Keywords

Comments

We know that Sum_{n >= 1} 2/(n^2 + n) = 2 and Sum_{n >= 1} 2/(p(n)*(p(n) + 1)) = 2*A179119, where p = A000040. Therefore, the present decimal expansion 1/1 + 1/10 + 1/21 + 1/36 + ... = 2*(1 - A179119).

Examples

			1.3395401474715935179... = 2 - (1/3 + 1/(3*2) + 1/(5*3) + 1/(7*4) + 1/(11*6) + ...) = 2*(1 - A179119).
		

Crossrefs

Programs

  • Mathematica
    digits = 87;
    S = 2 - 2 NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5];
    RealDigits[S, 10, digits][[1]] (* Jean-François Alcover, Jun 20 2019 *) [From A179119]
  • PARI
    2*(1 - sumeulerrat(1/(p*(p+1)))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals 2*(1 - A179119) = 2*(1 - Sum_{n>=1} 1/(A000040(n)*A008864(n))).

Extensions

Edited by Wolfdieter Lang, Jul 10 2019